Color texture classification by wavelet energy correlation signatures

  • G. Van de Wouwer
  • S. Livens
  • P. Scheunders
  • D. Van Dyck
Session 4: Color & Texture
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1310)

Abstract

In the last decade, multiscale techniques for gray-level texture analysis have been intensively studied. In this paper, we aim on extending these techniques to color images. We introduce wavelet energy-correlation signatures and we derive the transformation of these signatures upon linear color space transformations. Classification experiments demonstrate that the wavelet correlation features contain more information than the intensity or the energy features of each color plane separately. The influence of image representation in color space is evaluated.

Keywords

Color Image Color Space Recognition Rate Wavelet Energy Color Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.J. Klinker, S.A. Shafer, and T. Kanade. A physical approach to color image understanding. Int. J. Comput. Vision, 4:7–38, 1990.Google Scholar
  2. 2.
    G. Wyszecki and W. S. Stiles. Color Science, Concepts and Methods, Quantitative Data and Formulas, 2nd ed. J. Wiley and Sons, New York, 1982.Google Scholar
  3. 3.
    Q-T Luong. Color in computer vision. In C.H. Chen, L.F. Pau, and P.S.P. Wang, editors, Handbook of Pattern Recognition & Computer Vision, chapter 2.3, pages 311–368. World Scientific, Singapore, 1993.Google Scholar
  4. 4.
    Y.I. Ohta, T. Kanade, and T. Sakai. Color information for region segmentation. Computer graphics and image processing, 13:222–241, 1980.Google Scholar
  5. 5.
    W.K. Pratt. Spatial transform coding of color images. IEEE Trans. Comm. Tech., 19(6):980–992, 1971.Google Scholar
  6. 6.
    C.L. Novak and S.A. Shafer. Methods for estimating scene parameters from color histograms. J. Opt. Soc. Am. A., 11:3020–3036, 1994.Google Scholar
  7. 7.
    T.R. Reed and J.M.H. du Buf. A review of recent texture segmentation and feature extraction techniques. CVGIP: Image Understanding, 57(3):359–372, 1993.Google Scholar
  8. 8.
    D. Lee, R. Barber, W. Niblack, M. Flickner, J. Hafner, and D. Petkovic. Indexing for complex queries on a query-by-content image database. In Proc. of the 12nd IAPR Int. Conf. on Pattern Recognition, volume I, pages 142–146, Jerusalem, Israel, 1994.Google Scholar
  9. 9.
    J. R. Smith and S. Chang. Local color and texture extraction and spatial query. In IEEE Proc. Int. Conf. on Im. Proc., volume III, pages 1011–1014, 1996.Google Scholar
  10. 10.
    T. Caelli and D. Reye. On the classification of image regions by colour texture and shape. Pattern Recognition, 26(4):461–470, 1993.Google Scholar
  11. 11.
    D.K. Panjwani and G. Healey. Markov random field models for unsupervised segmentation of textured color images. IEEE Trans. Pattern Anal. Machine Intell., 17(10):939–954, 1995.Google Scholar
  12. 12.
    T.S. Lee. Image representation using 2d gabor wavelets. IEEE Trans. Patt. Anal. Machine Intell., 18(10):959–971, 1996.Google Scholar
  13. 13.
    S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. Machine Intell., 11(7):674–693, 1989.Google Scholar
  14. 14.
    T. Chang and C.-C.J. Kuo. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. In. Proc.P, 2(4), 1993.Google Scholar
  15. 15.
    G. Van de Wouwer, P. Scheunders, D. Van Dyck, M. De Bodt, F. Wuyts, and P.H. Van de Heyning. Wavelet-filvq classifier for speech analysis. In Proc. Int. Conf. Patt. Rec., Vienna, pages 214–218, 1996.Google Scholar
  16. 16.
    O. Pichler, A. Teuner, and B.J. Hosticka. A comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms. Pattern Recognition, 29(5):733–742, 1996.Google Scholar
  17. 17.
    H. Levkowitz and G. T. Herman. Glhs: A generalized lightness, hue and saturation model. CVGIP, 11(11):3011–3019, 1994.Google Scholar
  18. 18.
    P.A. Devijver and J. Kittler. Pattern recognition: a statitical approach. Prentice/Hall, Englewood Cliffs, New Jersey, 1982.Google Scholar
  19. 19.
    P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature selection. Pattern Recognition Letters, 15:1119–1125, 1994.Google Scholar
  20. 20.
    VisTex. Color image database. http://www-white.media.mit.edu/vismod/imagery/VisionTexture, 1995. MIT Media Lab.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • G. Van de Wouwer
    • 1
  • S. Livens
    • 1
  • P. Scheunders
    • 1
  • D. Van Dyck
    • 1
  1. 1.Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpenBelgium

Personalised recommendations