Advertisement

Fast stereovision by coherence detection

  • R. D. Henkel
Stereo and Correspondence
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1296)

Abstract

A new approach to stereo vision based on similarities between optical flow estimation and disparity computation is introduced. The fully parallel algorithm utilizes fast filter operations and aliasing effects of simple disparity detectors within a coherence detection scheme. It is able to calculate dense disparity maps, verification counts and the cyclopean view of a scene within a single computational structure.

Keywords

Optical Flow Stereo Vision Disparity Estimate Alias Effect Stereo Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. R. Dhond and J. K. Aggarwal, Structure from Stereo-A Review, IEEE Trans. Syst., Man and Cybern. 19, 1489–1510, 1989.Google Scholar
  2. 2.
    J. P. Frisby, Stereo Correspondence and Neural Networks, in “Handbook of Brain Theory”, ed. M. A. Arbib, 937–941, MIT Press 1995.Google Scholar
  3. 3.
    J. Weng, Image Matching Using the Windowed Fourier Phase, Int. J. of Comp. Vis. 3, 211–236, 1993.CrossRefGoogle Scholar
  4. 4.
    T.D. Sanger, Stereo Disparity Computations Using Gabor Filter, Biol. Cybern. 59, 405–418, 1988.CrossRefGoogle Scholar
  5. 5.
    M. R. M. Jenkin and A. D. Jepson, Recovering Local Surface Structure through Local Phase Difference Methods, CVGIP 59, 72–93, 1994.CrossRefGoogle Scholar
  6. 6.
    J. L. Barron, D.J. Fleet and S. S. Beauchemin, Performance of Optical Flow Techniques, Int. J. Comp. Vis. 12, 43–77, 1994.CrossRefGoogle Scholar
  7. 7.
    D.J. Fleet and A. D. Jepson, Stability of Phase Information, IEEE Trans. Part. Anal. Mach. Intel. 15, 1253–1268, 1993.CrossRefGoogle Scholar
  8. 8.
    R. Blake and H. R. Wilson, Neural Models of Stereoscopic Vision, TINS 14, 445–452, 1991.PubMedGoogle Scholar
  9. 9.
    D. Marr and T. Poggio, A Computational Theory of Human Stereo Vision, Proc. R. Sec. Lond. B 204, 301–328, 1979.Google Scholar
  10. 10.
    N. Qian and Y. Zhu, Physiological Computation of Binocular Disparity, to appear in Vision Research '97.Google Scholar
  11. 11.
    R. D. Freeman, G. C. DeAngelis, and I. Ohzawa, Depth is Encoded in the Visual Cortex by a Specialized Receptive Field Structure, Nature 11, 156–159, 1991.Google Scholar
  12. 12.
    E. H. Adelson and J. R. Bergen, Spatiotemporal Energy Models for the Perception of Motion, J. Opt. Sec. Am. A 2, 284–299, 1985.Google Scholar
  13. 13.
    K. Prazdny, Detection of Binocular Disparities, Biol. Cybern 52, 93–99, 1985.CrossRefPubMedGoogle Scholar
  14. 14.
    A. Fusiello, V. Roberto, and E. Trucco, A Symmetry-based Stereo Algorithm, Research report Udmi/53/96/Rr, submitted to CVPR 97, Machine Vision Lab, University of Udine, Italy, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. D. Henkel
    • 1
  1. 1.Institute for Theoretical NeurophysicsUniversity of BremenBremen

Personalised recommendations