Advertisement

Lexical acquisition and information extraction

  • Roberto Basili
  • Maria Teresa Pazienza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1299)

Keywords

Natural Language Processing Machine Translation Word Sense Word Sense Disambiguation Lexical Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    In Proceedings of A CL Conference on Very Large Corpora, 92–97.Google Scholar
  2. 2.
    In Proceedings of Conference on Emprical Natural language Processing, 96–97.Google Scholar
  3. 3.
    In Proceedings of Conference on New Methodologies for Language Processing, 94–96.Google Scholar
  4. 4.
    Computational Linguistics, Special Issue on Very Large Corpora, 1993.Google Scholar
  5. 5.
    Ecran: Extraction of content: Research at near-market. Technical report, EC ES-PRIT-LE n. 2110, 1995.Google Scholar
  6. 6.
    Facile: Fast and accurate categorisation of information by language engineering. Technical report, EC ESPRIT-LE, 1995.Google Scholar
  7. 7.
    Proceedings of the sixth message understanding conference (muc-6). In Columbia, MD,. Morgan Kaufmann, 1995.Google Scholar
  8. 8.
    S. Abney. Parsing by chuncks. In Principle-Based Parsing. Kluwer Academic Press, 1991.Google Scholar
  9. 9.
    H. Alshawi. Qualitative and quantitative models of speech translation. In Proc. of the A CL Workshop, The Balancing Act, Las Cruces, New Mexico, USA, 1994.Google Scholar
  10. 10.
    D. Appelt, J. Hobbs, J. Bear, D. Israel, and T. Mabry. Fastus: a finite-state pro-cessor for information extraction from real-world text. In Proc. of the International Joint Conference on Artificial Intelligence, 1993.Google Scholar
  11. 11.
    R. Basili, G. De Rossi, and M.T. Pazienza. Inducing terminology for lexical acqui-sition. In Proceedings of the Second Conference on Empirical Methods in Natural Language Processing, Providence, USA, 1997.Google Scholar
  12. 12.
    R. Basili, M. Della Rocca, and M.T. Pazienza. Contextual word sense tuning and disambiguation. Journal of Applied Artificial Intelligence, 1996.Google Scholar
  13. 13.
    R. Basili, M. Della Rocca, M.T. Pazienza, and P. Velardi. Contexts and categories: tuning a general purpose verbclassification to sublanguages. In Proc. of Inter-national Conference on Recent Advances in Natural Language Processing, Tzigov Chark, Bulgaria, 1995.Google Scholar
  14. 14.
    R. Basili, F. Grisoli, and M.T. Pazienza. Might a semantic lexicon support hyper-textul authoring? In Proc of the 4th A CL Applied Natural Language Processing, Stuttgart (Germany, 1994.Google Scholar
  15. 15.
    R. Basili, A. Marziali, and M.T. Pazienza. Modelling syntactic uncertainty in lex-ical acquisition from texts. Journal of Quantitative Linguistics, 1, 1994.CrossRefGoogle Scholar
  16. 16.
    R. Basili, A. Marziali, M.T. Pazienza, and P. Velardi. Unsupervised learning of syntactic knowledge: Methods and measures. In Proceedings of the International Conference on Empirical Methods in Natural Language Processing, Philadelfia, Pennsylvania, 1996.Google Scholar
  17. 17.
    R. Basili, M.T. Pazienza, and P. Velardi. Computational lexicons: the neat ex-amples and the odd exemplars. In Proc. of Third Int. Conf. on Applied Natural Language Processing, Povo, Trento, Italy, 1992.Google Scholar
  18. 18.
    R. Basili, M.T. Pazienza, and P. Velardi. A shallow syntactic analyzer to extract word associations from corpora. Literary and Linguistic Computing, 7(2), 1992.CrossRefGoogle Scholar
  19. 19.
    R. Basili, M.T. Pazienza, and P. Velardi. Acquisition of selectional patterns. Jour-nal of Machine Translation, 8, 1993.CrossRefGoogle Scholar
  20. 20.
    R. Basili, M.T. Pazienza, and P. Velardi. Semi-automatic extraction of linguistic information for syntactic disambiguation. Applied Artificial Intelligence, 4, 1993.Google Scholar
  21. 21.
    R. Basili, M.T. Pazienza, and P. Velardi. What can be learned from raw texts? Journal of Machine Translation, 8, 1993.CrossRefGoogle Scholar
  22. 22.
    R. Basili, M.T. Pazienza, and P. Velardi. A context driven conceptual clustering method for verb classification. MIT Press, 1996.Google Scholar
  23. 23.
    R. Basili, M.T. Pazienza, and P. Velardi. An empirical symbolic approach to nat-ural language processing. Artificial Intelligence, 85, 1996.Google Scholar
  24. 24.
    R. Basili, M.T. Pazienza, and P. Velardi. Integrating general purpose and corpus-based verb classifications. Computational Linguistics, 1996.Google Scholar
  25. 25.
    R. Basili, M. Vindigni, and M.T. Pazienza. Corpus-driven unsupervised learning of verb subcategorization frames. In Proc. Of Conference of the Italian Association for Artificial Intelligence, AI*IA 97, Rome, 1997.Google Scholar
  26. 26.
    R. Bod. Using an annotated corpus as a stochastic grammar. In Proceedings of the European Chapter of A CL (EACL-93), 1993.Google Scholar
  27. 27.
    B. K. Boguraev and T. Briscoe. Computational Lexicography for Natural Language Processing. Longman Group, 1989.Google Scholar
  28. 28.
    A. Bolioli, L. Dini, V. Di Tomaso, A. Goy, and D. Sestero. From it to ie through gl. In Proc. of International Workshop on Lexically-Driven Information Extraction, 1997.Google Scholar
  29. 29.
    E. Brill. A simple rule-based part of speech tagger. In Proc. of the Third Applied Natural Language Processing, Povo, Trento, Italy, 1992.Google Scholar
  30. 30.
    E. Brill and P. Resnik. A rule based approach to prepositional phrase attachment disambiguation. In Proc. of COLING-94, Kyoto, Japan, 1994.Google Scholar
  31. 31.
    L. Brown. Class-based language models. Computational Lingustics, 1994.Google Scholar
  32. 32.
    P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, R. Lafferty J.and Mercer, and P. Rossin. A statistical approach to machine translation. Com-putational Linguistics, 16(2), 1990.Google Scholar
  33. 33.
    P. Brown, S. Della Pietra, V. Della Pietra, J. Lai, and R. Mercer. An estimate of an upper bound for the entropy of english. Computational Linguistics, 18(1), 1992.Google Scholar
  34. 34.
    P. Buitelar. A lexicon for underspecified semantic tagging. In Proc. of the Applied Natural Language Processing 97 Workshop on “Tagging text with lexical seman-tics”, 1997.Google Scholar
  35. 35.
    C. Cardie. Embedded Machine Learning Systems for Natural Language Processing: A General Framework. Lecture Notes in Artificial Intelligence, Springer, 1996. Originally presented at the Workshop on New Approaches to Learning for Natural Language Processing, 14th International Joint Conference on Artificial Intelligence (IJCAI-95), 119–126, 1995. AAAI Press.Google Scholar
  36. 36.
    J.P. Chanod and P. Tapanainen. A robust finite-state parser for french. In J. Carrol, editor, Proceedings of the ESSLI-96 Workshop on Robust Parsing, Prague, 1996.Google Scholar
  37. 37.
    K. A. Church. A stochastic parts program and noun phrase parser for unrestricted text. In Proc. of Second Conference on Applied Natural Language Processing, 1988.Google Scholar
  38. 38.
    M. Collins and J. Brooks. Prepositional phrase attachment trough a backed-off model. In 3rd. A CL Workshop on Very Large Corpora, 1995.Google Scholar
  39. 39.
    J. Cowie, L. Guthrie, and J. Guthrie. Lexical disambiguation using simulated an-nealing. In Proc. of COLING-92, Nantes, France, 1992.Google Scholar
  40. 40.
    J. Cowie and W. Lehnert. Information extraction. Special NLP Issue of the Com-munications of the ACM, 1996.CrossRefGoogle Scholar
  41. 41.
    A. Cucchiarelli and P. Velardi. Automatic selection of class labels from a thesaurus for an effective semantic tagging of corpora. In Proc. of Fifth Applied Natural Language Processing, Washington DC, 1997.Google Scholar
  42. 42.
    H. Cunningham, K. Humphreys, R. Gaizauskas, and J. Wilks. Software infrastruc-ture for natural language processing. In Proc. of Fifth Applied Natural Language Processing, Washington DC, 1997.Google Scholar
  43. 43.
    I. Dagan, M. Marcus, and S. Markovitch. Contextual word similarity and estima-tion from sparse data. In Proc. of A CL-93, Ohio, USA, 1993.Google Scholar
  44. 44.
    R. Del Monte. Linguistic and Inferential Processes in text analysis by computer. UniPress, 1992.Google Scholar
  45. 45.
    M. Even. The relational models of the lexicon. Cambridge University Press, 1989.Google Scholar
  46. 46.
    A. Franz. A statistical approach to learning prepositional phrase attachment dis-ambiguation. In Proc. of IJCAI-95 WorkShop on “New Approaches to Learning for NLP”, 1995.Google Scholar
  47. 47.
    R. Gaizauskas, T. Wakao, K. Humphreys, H. Cunningham, and Y. Wilks. Univer-sity of sheffield: Description of the LaSIE System as used for MUC-6. In Proceed-ings of the Sixth Message Understanding Conference (MUC-6), Columbia, Mary-land, USA, November 1995.Google Scholar
  48. 48.
    R. Grishman. Where is the syntax? In MUC-6, 1996.Google Scholar
  49. 49.
    R. Grishman and J. Sterling. Generalizing automatically generated selectional pat-terns. In Proc. of COLING-94, Kyoto, Japan, 1994.Google Scholar
  50. 50.
    L. Guthrie, J. Pustejovsky, Y. Wilks, and B Slator. The role of lexicons in natural language processing. Communications of ACM, 39(1), 1996.CrossRefGoogle Scholar
  51. 51.
    D. Hindle. Acquiring disambiguation rules from text. In Proc. of ACL-89, 1989.Google Scholar
  52. 52.
    D. Hindle and M. Rooths. Structural ambiguity and lexical relation. Computa-tional Linguistics, 19(1), 1993.Google Scholar
  53. 53.
    J. Hobbs. The generic information extraction system. In Fourth Message Under-standing Conference, McLean, Virginia, 1992.Google Scholar
  54. 54.
    P. Jacobs. Text-based intelligent systems. In Working Notes of the AAAI Sympo-sium, Stanford University, 1990.Google Scholar
  55. 55.
    K. Jensen, G.H. Heidorn, and S.D. Richardson, editors. Natural Language processing: the PLNLP approach. Kluwer Academic, Boston/Dordrecht/London, 1993.Google Scholar
  56. 56.
    M. Johnston, B.K. Boguraev, and J. Pustejovsky. The acquisition and interpreta-tion iof complex nominals. In Working Notes of AAAI Workshop on “Representa-tion and Acquisition of Lexical Knowledge: Polysemy, Ambiguity and Generativity, Stanford University, CA, 1995.Google Scholar
  57. 57.
    A. Kilgariff. Foreground and background lexicons and word sense disambiguation for information extraction. In Proc. of International Workshop on Lexically-Driven Information Extraction, 1997.Google Scholar
  58. 58.
    A. Luk, B. Vauthey, and O. Ansaldi. Acquisition of domain specific salient se-mantic features for information extraction. In Proc. of International Workshop on Lexically-Driven Information Extraction, 1997.Google Scholar
  59. 59.
    M. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of english: the perm treebank. Computational Linguistics, 19(2), 1993.Google Scholar
  60. 60.
    S. McRoy. Using multiple knowledge sources for word sense disambiguation. Com-putational Linguistics, 18(1, 1992.Google Scholar
  61. 61.
    S. Montemagni and L. Vanderwelde. Structural patterns vs. string patterns for ex-tracting semantic information from dictionaries. In Proc. of COLING-92, Nantes, France, 1992.Google Scholar
  62. 62.
    J. Neumann, J. Backofen, R.and Baur, M. Becker, and C. Braun. An information extraction core system for real-world german text processing. In Proc. of Fifth Conference on Applied Natural Language Processing, Washington DC, USA, 1997.Google Scholar
  63. 63.
    H.T. Ng and H.B. Lee. Integrating multiple knowledge sources to disambiguate word senses: an exemplar-based approach. In Proc. of ACL-96, 1996.Google Scholar
  64. 64.
    F. Pereira, N. Tishby, and L. Lee. Distributional clustering of english words. In Proc. of ACL-93, 1993.Google Scholar
  65. 65.
    C. Pollard and I. Sag. Information Based Syntax and Semantics, Vol 1: Funda-mentals. CSLI n. 13, distributed by Chicago University Press, 1987.Google Scholar
  66. 66.
    J. Pustejovsky. The generative lexicon. Computational Linguistics, 17, 1991.Google Scholar
  67. 67.
    J. Pustejovsky. Type Cohercion and Lexical Selection. 1993.Google Scholar
  68. 68.
    J. Pustejovsky. The Generative Lexicon. MIT Press, 1995.Google Scholar
  69. 69.
    J. Pustejovsky, S. Bergler, and P. Anick. Lexical semantic techniques for corpus analysis. Computational Linguistics, 19(2), 1993.Google Scholar
  70. 70.
    P. S. Resnik. Selection and Information: A Class-Based Approach to Lexical Re-lationships. PhD thesis, Pennsylvania University, 1994.Google Scholar
  71. 71.
    E. Riloff and J. Shepherd. A corpus-based approach for building semantic lexicons. In Proc. of EMNLP-97, Rodhe Island, USA, 1997.Google Scholar
  72. 72.
    G. Ritchie. The Lexicon. 1987.Google Scholar
  73. 73.
    G. Salton, A. Wong, and C.S. Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11), 1975.CrossRefGoogle Scholar
  74. 74.
    F. Smadja. Macrocoding the Lexicon with co-occurrence knowledge. Zernik, U.,ed. “Lexical Acquisition” Lawrence Erlbaum, 1991.Google Scholar
  75. 75.
    J. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, 1984.Google Scholar
  76. 76.
    J. Sowa. Lexical Structures and Conceptual Structures, chapter 12. J. Pustejovsky Ed., “The Semantics and the Lexicon”, Kluwer, 1993.Google Scholar
  77. 77.
    Y. Wilks, D. Fass, C.M. Guo, J. McDonald, T. Blate, and B. Slator. Providing Machine Tractable Dictionary Tools, chapter 16. in Pustejovsky ed., “The Seman-tics and the Lexicon”, Kluwer, 1993.Google Scholar
  78. 78.
    Y. A. Wilks and M. Stevenson. The grammar of sense: Is word-sense tagging much more than part-of-speech tagging ? In Technical Report CS-96-05, University of Sheffield, 1996.Google Scholar
  79. 79.
    D. Yarowsky. Word sense disambiguation using statistical models of roget's cate-gories trained on large corpora. In Proc. of COLING-92, Nantes, France, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Roberto Basili
    • 1
  • Maria Teresa Pazienza
    • 1
  1. 1.Department of Computer Science, System and ProductionUniversity of RomaRomaItaly

Personalised recommendations