DisLoP: Towards a disjunctive logic programming system

  • Chandrabose Aravindan
  • Jürgen Dix
  • Ilkka Niemelä
System-Descriptions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1265)

Abstract

This paper gives a brief high-level description of the implementation of a disjunctive logic programming system referred to as DisLoP. This system is a result of research activities of the Disjunctive Logic Programming-project (funded by Deutsche Forschungs-Gemeinschaft), undertaken by the University of Koblenz since July 1995.

References

  1. [AB97]
    Chandrabose Aravindan and Peter Baumgartner. A rational and efficient algorithm for view deletion in databases. Technical Report RR-10-97, Fachbereich Informatik, Universität Koblenz-Landau, Koblenz, Germany, 1997.Google Scholar
  2. [ABD+96]
    C. Aravindan, P. Baumgartner, J. Dix, U. Furbach, G. Neugebauer, I. Niemelä, D. Schäfer, and F. Stolzenburg. On merging theorem proving and logic programming paradigms. In M. Maher, editor, Proceedings of the Joint International Conference and Symposium on Logic Programming, page 546, Bonn, Germany, September 1996. The MIT Press.Google Scholar
  3. [AD95]
    Chandrabose Aravindan and Phan Minh Dung. Knowledge base dynamics, abduction, and database updates. Journal of Applied Non-Classical Logics, 5(1):51–76, 1995. A related report is available on the web from http://www.uni-koblenz.de/∼arvind/papers/.Google Scholar
  4. [Ara96a]
    Chandrabose Aravindan. An abductive framework for negation in disjunctive logic programming. In J. J. Alferes, L. M. Pereira, and E. Orlowska, editors, Proceedings of Joint European workshop on Logics in AI, Lecture Notes in Artificial Intelligence 1126, pages 252–267. Springer-Verlag, 1996. A related report is available on the web from http://www.uni-koblenz.de/∼arvind/papers/.Google Scholar
  5. [Ara96b]
    Chandrabose Aravindan. DisLoP: A disjunctive logic programming system based on PROTEIN theorem prover. In G. Görz and S. Hölldobler, editors, Proc. of KI'96, Lecture Notes in Artificial Intelligence 1137, pages 19–23. Springer-Verlag, 1996.Google Scholar
  6. [BD95a]
    Stefan Brass and Jürgen Dix. A General Approach to Bottom-Up Computation of Disjunctive Semantics. In J. Dix, L. Pereira, and T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming, LNAI 927, pages 127–155. Springer, Berlin, 1995.Google Scholar
  7. [BD95b]
    Stefan Brass and Jürgen Dix. Disjunctive Semantics based upon Partial and Bottom-Up Evaluation. In Leon Sterling, editor, Proceedings of the 12th Int. Conf. on Logic Programming, Tokyo, pages 199–213. MIT Press, June 1995.Google Scholar
  8. [BD96]
    Stefan Brass and Jürgen Dix. Characterizing D-WFS: Confluence and Iterated GCWA. In L.M. Pereira J.J. Alferes and E. Orlowska, editors, Logics in Artificial Intelligence (JELIA '96), LNCS 1126, pages 268–283. Springer, 1996.Google Scholar
  9. [BD97a]
    Stefan Brass and Jürgen Dix. Characterizations of the Disjunctive Well-founded Semantics: Confluent Calculi and Iterated GCWA. Journal of Automated Reasoning, to appear, 1997. (Extended abstract appeared in: Characterizing D-WFS: Confluence and Iterated GCWA. Logics in Artificial Intelligence, JELIA '96, pages 268–283, 1996. Springer, LNCS 1126.).Google Scholar
  10. [BD97b]
    Stefan Brass and Jürgen Dix. Semantics of Disjunctive Logic Programs Based on Partial Evaluation. Journal of Logic Programming, accepted for publication, 1997.Google Scholar
  11. [BDNP97]
    Stefan Brass, Jürgen Dix, Ilkka Niemelä, and Teodor. C. Przymusinski. Comparison and Efficient Computation of the Static and the Disjunctive WFS. In Gerd Brewka, Emil Weydert, and Gees Witteveen, editors, Proceedings of the third Dutch-German Workshop on Nonmonotonic Reasoning and its Applications, pages 37–42. February 1997.Google Scholar
  12. [BDP96]
    Stefan Brass, Jürgen Dix, and Teodor. C. Przymusinski. Super Logic Programs. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth International Conference (KR '96), pages 529–541. San Francisco, CA, Morgan Kaufmann, 1996.Google Scholar
  13. [BF94a]
    P. Baumgartner and U. Furbach. Model Elimination without Contrapositives and its Application to PTTP. Journal of Automated Reasoning, 13:339–359, 1994. Short version in: Proceedings of CADE-12, Springer LNAI 814, 1994, pp 87–101.Google Scholar
  14. [BF94b]
    P. Baumgartner and U. Furbach. PROTEIN: A PROver with a Theory Extension Interface. In A. Bundy, editor, Automated Deduction — CADE-12, volume 814 of LNAI, pages 769–773. Springer, 1994. Available in the WWW, URL: http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.Google Scholar
  15. [BFFN97a]
    Peter Baumgartner, Peter Fröhlich, Ulrich Furbach, and Wolfgang Nejdl. Semantically Guided Theorem Proving for Diagnosis Applications. In Proc. of IJCAI '97. IJCAI, 1997. To appear.Google Scholar
  16. [BFFN97b]
    Peter Baumgartner, Peter Fröhlich, Ulrich Furbach, and Wolfgang Nejdl. Tableaux for Diagnosis Applications. In Tableaux '97, LNAI. Springer, 1997. To appear.Google Scholar
  17. [BFN96]
    Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper tableaux. In José Júlio Alferes, Luís Moniz Pereira, and Ewa Orlowska, editors, Proceedings of the European Workshop on Logics in Artificial Intelligence (JELIA '96), pages 1–17, Èvora, Portugal, September/October 1996. Springer-Verlag.Google Scholar
  18. [BFS95]
    P. Baumgartner, U. Furbach, and F. Stolzenburg. Model Elimination, Logic Programming and Computing Answers. In 14th International Joint Conference on Artificial Intelligence (IJCAI 95), volume 1, 1995. (Long version in: Research Report 1/95, University of Koblenz, Germany. To appear in Artificial Intelligence).Google Scholar
  19. [DS97]
    Jürgen Dix and Frieder Stolzenburg. Computation of Non-Ground Disjunctive Well-Founded Semantics with Constraint Logic Programming (preliminary report). In J. Dix, L. Pereira, and T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming, LNAI 1216, pages 202–226. Springer, Berlin, 1997.Google Scholar
  20. [DS98]
    Jürgen Dix and Frieder Stolzenburg. A Framework to incorporate Nonmonotonic Reasoning into Constraint Logic Programming. Journal of Logic Programming, 1998. Special Issue on Constraint Logic Programming, Guest Editors: Kim Marriott and Peter Stuckey, to appear.Google Scholar
  21. [Llo87]
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second extended edition, 1987.Google Scholar
  22. [LMR92]
    Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of disjunctive logic programming. MIT Press, 1992.Google Scholar
  23. [Min82]
    Jack Minker. On indefinite databases and the closed world assumption. In Lecture Notes in Computer Science 138, pages 292–308. Springer-Verlag, 1982.Google Scholar
  24. [Nie96a]
    I. Niemelä. Implementing circumscription using a tableau method. In Proceedings of the European Conference on Artificial Intelligence, pages 80–84, Budapest, Hungary, August 1996. John Wiley.Google Scholar
  25. [Nie96b]
    I. Niemelä. A tableau calculus for minimal model reasoning. In Proceedings of the Fifth Workshop on Theorem Proving with Analytic Tableaux and Related Methods, pages 278–294, Terrasini, Italy, May 1996. Springer-Verlag.Google Scholar
  26. [RLM89]
    Arcot Rajasekar, Jorge Lobo, and Jack Minker. Weak generalized closed world assumption. Journal of Automated Reasoning, 5:293–307, 1989.Google Scholar
  27. [RT88]
    K. A. Ross and R. W. Topor. Inferring negative information from disjunctive databases. Journal of Automated Reasoning, 4(2):397–424, 1988.Google Scholar
  28. [ST96]
    Frieder Stolzenburg and Bernd Thomas. Analysing rule sets for the calculation of banking fees by a theorem prover with constraints. In Proceedings of the 2nd International Conference on Practical Application of Constraint Technology, pages 269–282, London, 1996. Practical Application Company.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Chandrabose Aravindan
    • 1
  • Jürgen Dix
    • 1
  • Ilkka Niemelä
    • 1
  1. 1.Department of Computer ScienceUniversity of KoblenzKoblenzGermany

Personalised recommendations