Advertisement

Generalized query answering in disjunctive deductive databases: Procedural and nonmonotonic aspects

  • Adnan H. Yahya
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1265)

Abstract

Generalized queries are defined as sets of clauses in implicationform. They cover several tasks of practical importance for database maintenance such as answering positive queries, computing database completions and integrity constraints checking. We address the issue of nswering generalized queries under the minimal model semantics for the class of Disjunctive Deductive Databases (DDDBs). Our approach is based on having the query induce an order on the models returned by a sound and complete minimal model generating procedure. We consider answers that are true in all and those that are true in some minimal models of the theory and investigate the monotonicity properties of the different classes of queries and answers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Baumgatrner, U. Furbach, and I. Niemmelä. Hyper tabluaux. Technical Report 8-96, Institut für Informatik, Univesität Koblenz, Koblenz, Germany, feb 1996.Google Scholar
  2. 2.
    G. Bossu and P. Siegel. Saturation, nonmonotonic reasoning and the closed-world assumption. Artificial Intelligence, 25(1):13–63, January 1985.Google Scholar
  3. 3.
    F. Bry and A. Yahya. Minimal model generation with positive unit hyper-resolution tableaux. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the Fifth Workshop on Theorem Proving with Analytic Tableaux and Related Methods, pages 143–159, Palermo, Italy, May 1996. Springer-Verlag. Vol. 1071, Full version: http://www.pms.informatik.unimuenchen.de/Publikationen/.Google Scholar
  4. 4.
    G. Dong, S. Jianwen, and R. Topor. Nonrecursive incremental evaluation of datalog queries. Annals of Mathematics and Artificial Intelligence, 14(1):187–223, 1995.Google Scholar
  5. 5.
    J. A. Fernández and J. Minker. Computing perfect models of stratified disjunctive databases. Annals of Mathematics and Artificial Intelligence, 1993. Submitted. Preliminary version presented at the ILPS'91 Workshop on Disjunctive Logic Programs, San Diego, California.Google Scholar
  6. 6.
    J. A. Fernández and J. Minker. Bottom-up computation of perfect models for disjunctive stratified theories. Journal of Logic Programming, 25(1):33–50, 1995.Google Scholar
  7. 7.
    A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic and Computation, 2(6):719–770, 1993.Google Scholar
  8. 8.
    R. Kowalski and F. Sadri. A theorem proving approach to database integrity. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, 1988.Google Scholar
  9. 9.
    R.A. Kowalski. Problems and promises of computational logic. In Lecture Notes in Computer Science Series, pages 80–95. Springer-Verlag, 1990.Google Scholar
  10. 10.
    J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MIT Press, 1992.Google Scholar
  11. 11.
    R. Manthey and F. Bry. Satchmo: a theorem prover implemented in prolog. In J.L. Lassez, editor, Proc. 9 th CADE, pages 456–459, 1988.Google Scholar
  12. 12.
    J. Minker. On indefinite databases and the closed world assumption. In Lecture Notes in Computer Science 138, pages 292–308. Springer-Verlag, 1982.Google Scholar
  13. 13.
    I. Niemelä. A tableau calculus for minimal model reasoning. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the Fifth Work shopon Theorem Proving with Analytic Tableaux and Related Methods, pages 278–294, Palermo, Italy, May 1996. Springer-Verlag. Vol. 1071.Google Scholar
  14. 14.
    R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages 55–76. Plenum Press, New York, 1978.Google Scholar
  15. 15.
    R. Reiter. On asking what a database knows. In J.Lloyd, editor, Proc. Symposium on Computational Logic, 1990. Lecture Notes in Computer Science.Google Scholar
  16. 16.
    M. Suchenek. First-order syntactic characterizations of minimal entailment, domain minimal entailment and herbrand entailment. Journal of Automated Reasoning, 10:237–236, 1993.Google Scholar
  17. 17.
    A. Yahya. Generalized query answering in disjunctive databases using minimal model generation. Technical Report PMS-FB-96-13, LMU-München, Munich University, Munich, Germany, aug 1996. WWW: http://www.informatik.unimuenchen.de/pms/publikationen/berichte/PMS-FB-1996-13.ps.gz.Google Scholar
  18. 18.
    A. Yahya. Model generation in disjunctive normal databases. Technical Report PMS-FB-96-10, LMU-München, Munich University, Munich, Germany, jun 1996. WWW: http://www.informatik.unimuenchen.de/pms/publikationen/berichte/PMS-FB-1996-10.ps.gz.Google Scholar
  19. 19.
    A. Yahya, J.A. Fernandez, and J. Minker. Ordered model trees: A normal form for disjunctive deductive databases. J. Automated Reasoning, 13(1):117–144, 1994.Google Scholar
  20. 20.
    A. Yahya and L.J. Henschen. Deduction in Non-Horn Databases. J. Automated Reasoning, 1(2):141–160, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Adnan H. Yahya
    • 1
  1. 1.Electrical Engineering DepartmentBirzeit UniversityBirzeitPalestine

Personalised recommendations