Some strange quantifiers

  • Wilfrid Hodges
Model Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1261)


We report a recent Tarski-style semantics for a language which includes the branching quantifiers on which Andrzej Ehrenfeucht made the first breakthrough in 1958. The semantics is equivalent to Henkin's game-theoretic semantics, but unlike Henkin's it is compositional. We use second-order formulas to give a new (and with any luck, more manageable) description of this Tarski-style semantics. Finally we apply the new description to present a compositional and fully abstract semantics for the slightly more limited syntax of Hintikka and Sandu, answering a question of Sandu.


Atomic Formula Winning Strategy Universal Quantifier Existential Quantifier Compositional Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barwise, J., Etchemendy, J.: Tarski's world 3.0. CSLI/SRI International, Menlo Park CA, 1991.Google Scholar
  2. 2.
    Enderton, H. B.: Finite partially ordered quantifiers. Zeitschrift für Math. Logic und Grundlagen der Math. 16 (1970) 393–397.Google Scholar
  3. 3.
    Gronendieck, J., Stokhof, M.: Dynamic predicate logic. Linguistics and Philosophy 14 (1991) 39–100.Google Scholar
  4. 4.
    Henkin, L.: Some remarks on infinitely long formulas. Infinitistic methods, Pergamon Press, Oxford and PAN, Warsaw 1961, pp. 167–183.Google Scholar
  5. 5.
    Hintikka, J.: Logic, language-games and information. Clarendon Press, Oxford 1973.Google Scholar
  6. 6.
    Hintikka, J.: The principles of mathematics revisited. Cambridge University Press, Cambridge 1996.Google Scholar
  7. 7.
    Hintikka, J., Sandu, G.: Game-theoretical semantics. Handbook of logic and language, ed. van Benthem, J., ter Meulen, A., Elsevier 1996, pp. 361–410.Google Scholar
  8. 8.
    Hodges, W.: Compositional semantics for a language of imperfect information. Logic Journal of the IGPL (1997), to appear.Google Scholar
  9. 9.
    Lang, S.: Diophantine geometry. John Wiley and Sons, New York 1962.Google Scholar
  10. 10.
    Walkoe, W. J.: Finite partially-ordered quantification. Journal of Symbolic Logic 35 (1970) 535–555.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Wilfrid Hodges
    • 1
  1. 1.Queen Mary and Westfield CollegeUniversity of LondonEngland

Personalised recommendations