Advertisement

A new quadratic algorithm to convert a regular expression into an automaton

  • J. -L. Ponty
  • D. Ziadi
  • J. -M. Champarnaud
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1260)

Abstract

We present a new sequential algorithm to convert a regular expression into its Glushkov automaton. This conversion runs in quadratic time, so it has the same time complexity as the Brüggemann-Klein algorithm and the Chang and Paige one. It provides, however, a representation of the Glushkov automaton that needs only linear space.

Keywords

Regular Expression Parse Tree Empty Word Finite State Automaton Transition Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ASU86]
    A. Aho, R. Sethi and J-D. Ullman, Compilers, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1986.Google Scholar
  2. [AU92]
    A. Aho and J.D. Ullman, Foundations of Computer Science, W.H. Freeman and Company, New York, 1992.Google Scholar
  3. [BP95]
    J. Berstel and J-E. Pin, Local languages and the Berry-Sethi algorithm, Theoretical Computer Science, 155: 439–446, 1996.Google Scholar
  4. [BS86]
    G. Berry and R. Sethi, From Regular Expression to Deterministic Automata, Theoretical Computer Science, 48: 117–126, 1986.Google Scholar
  5. [BBCh92]
    D. Beauquier, J. Berstel et Ph. Chrétienne, Eléments d'algorithmique, Ed. Masson, Paris, 1992.Google Scholar
  6. [B-K93]
    A. Brüggemann-Klein, Regular Expressions into Finite Automata, Theoretical Computer Science, 120: 197–213, 1993.Google Scholar
  7. [CH91]
    J.-M. Champarnaud and G. Hansel, AUTOMATE, a computing package for automata and finite semigroups, Journal of Symbolic Computation, 12, 197–220, 1991.MathSciNetGoogle Scholar
  8. [CP92]
    C.H. Chang and R. Paige, From regular expressions to dfa's using compressed nfa's. In Apostolico, Crochemore, Galil and Manber editors, LNCS 644: Combinatorial Pattern Matching, Proceedings, 88–108, Springer Verlag, 1992.Google Scholar
  9. [Glus61]
    V.-M. Glushkov, The abstract theory of automata, Russian Mathematical Surveys, 16, 1–53, 1961.Google Scholar
  10. [Wats93]
    B.W. Watson, Taxonomies and Toolkits of Regular Language Algorithms, CIF-DATA Koninklijke Bibliotheek, Den Haag, Ph. D., Eindhoven University of Technology, 1995.Google Scholar
  11. [DZ96]
    D. Ziadi, Algorithmique parallèle et séquentielle des automates, Thèse de doctorat, Université de Rouen, 1996.Google Scholar
  12. [DZ-JMC95]
    D. Ziadi and J.-M. Champarnaud, An optimal parallel algorithm to convert a regular expression into its Glushkov automaton, accepted in Theoretical Computer Science, rapport LIR95.10 Informatique Fondamentale, Université de Rouen, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. -L. Ponty
    • 1
  • D. Ziadi
    • 1
  • J. -M. Champarnaud
    • 1
  1. 1.Faculté des Sciences et des TechniquesLaboratoire d'Informatique de RouenMont-Saint-Aignan CedexFrance

Personalised recommendations