Advertisement

Logical universality and self-reproduction in reversible cellular automata

  • Kenichi Morita
  • Katsunobu Imai
Cellular Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1259)

Abstract

A reversible cellular automaton (RCA) is a “backward deterministic” CA in which every configuration of the cellular space has at most one predecessor. Such reversible systems have a close connection to physical reversibility, and have been known to play an important role in the problem of inevitable power dissipation in computing systems. In this paper, we investigate problems of logical universality and self-reproducing ability in two-dimensional reversible cellular spaces. These problems will become much more important when one tries to construct nano-scaled functional objects based on microscopic physical law. Here, we first discuss how logical universality can be obtained under the reversibility constraint, and show our previous models of 16-state universal reversible CA. Next we explain how self-reproduction is possible in a reversible CA.

Keywords

Cellular Automaton Turing Machine Cellular Automaton Cellular Automaton Model Cellular Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., Logical reversibility of computation, IBM J.Res.Dev., 17, 525–532 (1973).Google Scholar
  2. 2.
    Bennett, C.H., The thermodynamics of computation, Int.J.Theoret.Phys., 21, 905–940 (1982).Google Scholar
  3. 3.
    Bennett, C.H., and Landauer, R., The fundamental physical limits of computation, Sci.Am., 253, 38–46 (1985).Google Scholar
  4. 4.
    Bennett, C.H., Notes on the history of reversible computation, IBM J.Res.Dev., 32, 16–23 (1988).Google Scholar
  5. 5.
    Codd, E.F., Cellular Automata, Academic Press, New York (1968).Google Scholar
  6. 6.
    Deutsch, D., Quantum theory, the Church-Turing principle and the universal quantum computer, Proc.R.Soc.Lond.A, 400, 97–117 (1985).Google Scholar
  7. 7.
    Feynman, R.P., Simulating physics with computers, Int.J.Theoret.Phys., 21, 467–488 (1982).Google Scholar
  8. 8.
    Fredkin, E., and Toffoli, T., Conservative logic, Int.J.Theoret.Phys., 21, 219–253 (1982).Google Scholar
  9. 9.
    Ibáñez, J., Anabitarte, D., Azpeitia, I., Barrera, O., Barrutieta, A., Blanco, H., and Echarte, F., Self-inspection based reproduction in cellular automata, in Advances in Artificial Life (eds. F. Moran et al.), LNAI-929, Springer-Verlag, 564–576 (1995).Google Scholar
  10. 10.
    Imai, K., and Morita, K., On computation-universal two-dimensional cellular automata (in Japanese), Proc. LA Summer Symposium (Kobe), 4.1–6 (1996). http://kelp.ke.sys.hiroshima-u.ac.jp/projects/rca/urpca/triangular/Google Scholar
  11. 11.
    Laing, R., Automaton models of reproduction by self-inspection, J.Theor.Biol., 66, 437–456 (1977).Google Scholar
  12. 12.
    Langton, C.G., Self-reproduction in cellular automata, Physica, 10D, 135–144 (1984).Google Scholar
  13. 13.
    Margolus, N., Physics-like model of computation, Physica, 10D, 81–95 (1984).Google Scholar
  14. 14.
    Morita, K., and Harao, M., Computation universality of one-dimensional reversible (injective) cellular automata, Trans.IEICE, E-72, 758–762 (1989).Google Scholar
  15. 15.
    Morita, K., and Ueno, S., Computation-universal models of two-dimensional 16-state reversible cellular automata, IEICE Trans.Inf.& Syst., E75-D, 141–147 (1992).Google Scholar
  16. 16.
    Morita, K., Computation-universality of one-dimensional one-way reversible cellular automata, Inform.Process.Lett., 42, 325–329 (1992).Google Scholar
  17. 17.
    Morita, K., Reversibility in computation (in Japanese), J.Inform.Process.Soc.of Japan, 35, 306–314 (1994).Google Scholar
  18. 18.
    Morita, K., Reversible cellular automata (in Japanese), J.Inform.Process.Soc.of Japan, 35, 315–321 (1994).Google Scholar
  19. 19.
    Morita, K., Reversible simulation of one-dimensional irreversible cellular automata, Theoret.Comput.Sci., 148, 157–163 (1995).Google Scholar
  20. 20.
    Morita, K., and Imai, K., A simple self-reproducing cellular automaton with shape-encoding mechanism, Proc. ALIFE V (Nara) (1996).Google Scholar
  21. 21.
    Morita, K., and Imai, K., Self-reproduction in a reversible cellular space, Theoret. Comput.Sci., 168, 337–366 (1996). http://kepi.ke.sys.hiroshima-u.ac.jp/projects/rca/sr/Google Scholar
  22. 22.
    von Neumann, J., Theory of Self-reproducing Automata (ed. A.W. Burks), The University of Illinois Press, Urbana (1966).Google Scholar
  23. 23.
    Toffoli, J., Computation and construction universality of reversible cellular automata, J.Comput.Syst.Sci., 15, 213–231 (1977).Google Scholar
  24. 24.
    Toffoli, T., and Margolus, N., Invertible cellular automata: a review, Physica D, 45, 229–253 (1990).Google Scholar
  25. 25.
    Watrous, J., On one-dimensional quantum cellular automata, Proc. 36th IEEE Symposium on Foundations of Computer Science, 528–537 (1995).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Kenichi Morita
    • 1
  • Katsunobu Imai
    • 1
  1. 1.Faculty of EngineeringHiroshima UniversityHigashi-Hiroshima-shiJapan

Personalised recommendations