An improved master theorem for divide-and-conquer recurrences

  • Salvador Roura
Session 11: Analysis of Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1256)

Abstract

We present a new master theorem for the study of divide-and-conquer recursive definitions, which improves the old one in several aspects. In particular, it provides more information, frees us completely from technicalities like floors and ceilings, and covers a wider set of toll functions and weight distributions, stochastic recurrences included.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, MA, 1990.Google Scholar
  2. 2.
    Philippe Flajolet, Gaston Gonnet, Claude Puech, and J.M. Robson. Analytic variations on quadtrees. Algorithmica, 10:473–500, 1993.CrossRefGoogle Scholar
  3. 3.
    C. A. R. Hoare. Find (Algorithm 65). Communications of the ACM, 4:321–322, 1961.CrossRefGoogle Scholar
  4. 4.
    C. A. R. Hoare. Quicksort. Computer Journal, 5:10–15, 1962.CrossRefGoogle Scholar
  5. 5.
    Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley, 1996.Google Scholar
  6. 6.
    M.H. van Emden. Increasing the efficiency of quicksort. Communications of the ACM, 13:563–567, 1970.CrossRefGoogle Scholar
  7. 7.
    Rakesh M. Verma. A general method and a master theorem for divide-and-conquer recurrences with applications. Journal of Algorithms, 16:67–79, 1994.CrossRefGoogle Scholar
  8. 8.
    Rakesh M. Verma. General techniques for analyzing recursive algorithms with applications. SIAM Journal on Computing, 26(2):568–581, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Salvador Roura
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations