Optimal data types in optical tomography

  • M. Schweiger
  • S. R. Arridge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1230)

Abstract

This paper addresses the problem of image reconstruction in optical tomography with respect to the measurement types used. We demonstrate the difficulty of the simultaneous reconstruction of absorption and diffusion images, by using both a simple circular case with embedded inhomogeneities, and a complex neonatal head model, and show that improvements are possible by combining suitable measurement types. We analyse the potential ability of the reconstruction program to separate absorption and scattering features by plotting the error norm as a function of absorption and scattering coefficient in the singleperturbation case for a number of different measurement types.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, and E. O. R. Reynolds. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet, ii:770–771, 1988.Google Scholar
  2. 2.
    J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, and E. O. R. Reynolds. Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy. J. Appl. Physiol., 68(3):1086–1091, 1990.PubMedGoogle Scholar
  3. 3.
    M. Tamura. Multichannel near-infrared optical imaging of human brain activity. In Advances in Optical Imaging and Photon Migration, volume 2, pages 8–10. Proc. OSA, Proc. OSA, 1996.Google Scholar
  4. 4.
    J. C. Hebden, R. A. Kruger, and K. S. Wong. Time resolved imaging through a highly scattering medium. Appl. Opt., 30(7):788–794, 1991.Google Scholar
  5. 5.
    S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy. A finite element approach for modeling photon transport in tissue. Med. Phys., 20(2):299–309, 1993.PubMedGoogle Scholar
  6. 6.
    M. Schweiger, S. R. Arridge, and D. T. Delpy. Application of the finite-element method for the forward and inverse models in optical tomography. J. Math. Imag. Vision, 3:263–283, 1993.Google Scholar
  7. 7.
    D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, and J. Wyatt. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol., 33:1433–1442, 1988.PubMedGoogle Scholar
  8. 8.
    B. Chance, M. Maris, J. Sorge, and M. Z. Zhang. A phase modulation system for dual wavelength difference spectroscopy of haemoglobin deoxygenation in tissue. volume 1204, pages 481–491. Proc. SPIE, 1990.Google Scholar
  9. 9.
    S. R. Arridge and M. Schweiger. Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method. Appl. Opt., 34(15):2683–2687, 1995.Google Scholar
  10. 10.
    S. J. Madsen, M. S. Patterson, B. C. Wilson, S. M. Jaywant, and A. Othonos. Numerical modelling and experimental studies of light pulse propagation in inhomogeneous random media. In B. Chance and R. R. Alfano, editors, Photon Migration and Imaging in Random Media and Tissues, volume 1888, pages 90–102. Proc. SPIE, 1993.Google Scholar
  11. 11.
    J. B. Fishkin and E. Gratton. Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge. J. Opt. Soc. Am. A, 10(1):127–140, 1993.PubMedGoogle Scholar
  12. 12.
    T. J. Farrell and M. S. Patterson. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys., 19(4):879–888, 1992.PubMedGoogle Scholar
  13. 13.
    M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy. The finite element model for the propagation of light in scattering media: Boundary and source conditions. Med. Phys., 22(11):1779–1792, 1995.PubMedGoogle Scholar
  14. 14.
    J. D. Moulton. Diffusion modelling of picosecond laser pulse propagation in turbid media. M. Eng. thesis, McMaster University, Hamilton, Ontario, 1990.Google Scholar
  15. 15.
    S. R. Arridge. Photon measurement density functions. Part 1: Analytical forms. Appl. Opt, 34(31):7395–7409, 1995.Google Scholar
  16. 16.
    S. R. Arridge and M. Schweiger. Photon measurement density functions. Part 2: Finite element calculations. Appl. Opt., 34(34):8026–8037, 1995.Google Scholar
  17. 17.
    S. R. Arridge, M. Hiraoka, and M. Schweiger. Statistical basis for the determination of optical pathlength in tissue. Phys. Med. Biol., 40:1539–1558, 1995.PubMedGoogle Scholar
  18. 18.
    M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy. Application of the finite element method for the forward model in infrared absorption imaging. volume 1768, pages 97–108. Proc. SPIE, 1992.Google Scholar
  19. 19.
    S. R. Arridge and M. Schweiger. The use of multiple data types in time-resolved optical absorption and scattering tomography (TOAST). volume 2035, pages 218–229. Proc. SPIE, 1993.Google Scholar
  20. 20.
    S. R. Arridge and M. Schweiger. Reconstruction in optical tomography using MRI based prior knowledge. In Y. Bizais, C. Barillot, and R. di Paola, editors, Information Processing in Medical Imaging '95, pages 77–88. Springer, Berlin, 1995.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • M. Schweiger
    • 1
  • S. R. Arridge
    • 2
  1. 1.Dept. of Medical PhysicsUniversity College LondonUK
  2. 2.Dept. of Computer ScienceUniversity College LondonUK

Personalised recommendations