Wiring edge-disjoint layouts

  • Ruth Kuchem
  • Dorothea Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1190)


We consider the wiring or layer assignment problem for edge-disjoint layouts. The wiring problem is well understood for the case that the underlying layout graph is a square grid (see [8]). In this paper, we introduce a more general approach to this problem. For an edge-disjoint layout in the plane resp. in an arbitrary planar layout graph, we give equivalent conditions for the k-layer wirability. Based on these conditions, we obtain linear-time algorithms to wire every layout in a trihexagonal grid, respectively every layout in a tri-square-hexagonal grid using at most five layers.


  1. 1.
    M. Brady and D. Brown: VLSI routing: Four layers suffice. In F. Preparata, editor, Advances in Computer Research, VOL 2: VLSI Theory, JAI Press Inc. (1984) 245–257Google Scholar
  2. 2.
    M. Brady and M. Sarrafzadeh: Stretching a knock-knee layout for multilayer wiring. IEEE Transactions on Computers, C-39 (1990) 148–152CrossRefGoogle Scholar
  3. 3.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis: Algorithms for Drawing Graphs: an Annotated Bibliography. Computational Geometry 4 (1994) 235–282MathSciNetGoogle Scholar
  4. 4.
    T. F. Gonzales and S. Zheng: Simple three-layer channel routing algorithms. In J. H. Reif, editor, Proceedings Aegean Workshop on Computing. Springer-Verlag, Lecture Notes in Computer Science, vol. 319 (1988) 237–246Google Scholar
  5. 5.
    M. Kaufmann and P. Molitor: Minimal stretching of a layout to ensure 2-layer wirability. INTEGRATION The VLSI Journal, 12 (1991) 339–352CrossRefGoogle Scholar
  6. 6.
    R. Kuchem, D. Wagner, and F. Wagner: Optimizing area for three-layer channel routing. Algorithmica, 15 (1996) 495–519CrossRefGoogle Scholar
  7. 7.
    W. Lipski, Jr: On the structure of three-layer wirable layouts. In F. Preparata, editor, Advances in Computer Research, VOL 2: VLSI Theory, JAI Press Inc. (1984) 231–243Google Scholar
  8. 8.
    W. Lipski, Jr and F. P. Preparata: A unified approach to layout wirability. Math. Systems Theory, 19 (1987) 189–203CrossRefGoogle Scholar
  9. 9.
    R. H. Möhring, D. Wagner, and F. Wagner: VLSI Network Design: A survey. In M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, editors, Handbooks in Operations Research/Management Science, Volume on Networks, North-Holland, (1995) 625–712Google Scholar
  10. 10.
    P. Molitor: A survey on wiring. J. Inform. Process. Cybernet. EIK, 27 (1991) 3–19Google Scholar
  11. 11.
    H. Ripphausen-Lipa, D. Wagner, and K. Weihe: Efficient algorithms for disjoint paths in planar graphs. In W. Cook, L. Lovász, and P. Seymour, editors, DIMACS, Center for Discr. Math. and Comp. Sc., 20, Springer-Verlag, Berlin (1995) 295–354Google Scholar
  12. 12.
    M. Sarrafzadeh, D. Wagner, F. Wagner, and K. Weihe: Wiring knock-knee layouts: a global approach. IEEE Transactions on Computers 43 (1994) 581–589CrossRefGoogle Scholar
  13. 13.
    I. G. Tollis: Wiring Layouts in the Tri-Hexagonal Grid. Intern. J. Computer Math. 37 (1990) 161–171Google Scholar
  14. 14.
    I. G. Tollis: A New Approach to Wiring Layouts. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10 (1991) 1392–1400CrossRefGoogle Scholar
  15. 15.
    I. G. Tollis: Wiring in uniform grids and two-colorable maps. INTEGRATION The VLSI Journal 12 (1991) 189–210CrossRefGoogle Scholar
  16. 16.
    D. Wagner: Optimal routing through dense channels. Int. J. on Comp. Geom. and Appl. 3 (1993) 269–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Ruth Kuchem
    • 1
  • Dorothea Wagner
    • 2
  1. 1.RWTH AachenGermany
  2. 2.Fakultät für Mathematik und InformatikUniversität KonstanzKonstanzGermany

Personalised recommendations