Drawing directed acyclic graphs: An experimental study

  • Giuseppe Di Battista
  • Ashim Garg
  • Giuseppe Liotta
  • Armando Parise
  • Roberto Tamassia
  • Emanuele Tassinari
  • Francesco Vargiu
  • Luca Vismara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1190)

Abstract

In this paper we consider the class of directed acyclic graphs (DAGs), and present the results of an experimental study on four drawing algorithms specifically developed for DAGs. Our study is conducted on two large test suites of DAGs and yields more than 30 charts comparing the performance of the drawing algorithms with respect to several quality measures, including area, crossings, bends, and aspect ratio. The algorithms exhibit various trade-offs with respect to the quality measures, and none of them clearly outperforms the others.

References

  1. 1.
    P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. How to draw a series-parallel digraph. Internat. J. Comput. Geom. Appl., 4:385–402, 1994.CrossRefGoogle Scholar
  2. 2.
    F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison of force-directed and randomized graph drawing algorithms. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes in Computer Science, pages 76–87. Springer-Verlag, 1996.Google Scholar
  3. 3.
    L. Buti, G. Di Battista, G. Liotta, E. Tassinari, F. Vargiu, and L. Vismara. GD-Workbench: A system for prototyping and testing graph drawing algorithms. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of LNCS, pages 111–122. Springer-Verlag, 1996.Google Scholar
  4. 4.
    M. Chrobak, M. T. Goodrich, and R. Tamassia. Convex drawings of graphs in two and three dimensions. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 319–328, 1996.Google Scholar
  5. 5.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: An annotated bibliography. Comput. Geom. Theory Appl., 4:235–282, 1994.Google Scholar
  6. 6.
    G. Di Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia, E. Tassinari, F. Vargiu, and L. Vismara. Drawing directed graphs: An experimental study. Technical Report CS-96-24, Center for Geometric Computing, Dept. Computer Science, Brown Univ., 1996. ftp://ftp.cs.brown.edu/pub/techreports/96/ cs96-24.ps.Z.Google Scholar
  7. 7.
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of three graph drawing algorithms. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 306–315, 1995.Google Scholar
  8. 8.
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 1996 (to appear). http://www.cs.brown.edu/cgc/papers/ dglttv-ecfgd-96.ps.gz.Google Scholar
  9. 9.
    G. Di Battista, E. Pietrosanti, R. Tamassia, and I. G. Tollis. Automatic layout of PERT diagrams with XPERT. In Proc. IEEE Workshop on Visual Languages (VL'89), pages 171–176, 1989.Google Scholar
  10. 10.
    G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci., 61:175–198, 1988.CrossRefGoogle Scholar
  11. 11.
    G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom., 7:381–401, 1992.Google Scholar
  12. 12.
    G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibility representations of graphs. Inform. Process. Lett., 41:1–7, 1992.CrossRefGoogle Scholar
  13. 13.
    E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for drawing directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.CrossRefGoogle Scholar
  14. 14.
    E. R. Gansner, S. C. North, and K. P. Vo. DAG — A program that draws directed graphs. Softw. — Pract. Exp., 18(11):1047–1062, 1988.Google Scholar
  15. 15.
    A. Garg and R. Tamassia. Planar drawings and angular resolution: Algorithms and bounds. In J. van Leeuwen, editor, Algorithms (Proc. ESA '94), volume 855 of Lecture Notes in Computer Science, pages 12–23. Springer-Verlag, 1994.Google Scholar
  16. 16.
    A. Garg and R. Tamassia. Upward planarity testing. Order, 12:109–133, 1995.CrossRefGoogle Scholar
  17. 17.
    M. Himsolt. Comparing and evaluating layout algorithms within GraphEd. J. Visual Lang. Comput., 6(3), 1995. (Special Issue on Graph Visualization, I. F. Cruz and P. Eades, editors).Google Scholar
  18. 18.
    S. Jones, P. Eades, A. Moran, N. Ward, G. Delott, and R. Tamassia. A note on planar graph drawing algorithms. Technical Report 216, Department of Computer Science, University of Queensland, 1991.Google Scholar
  19. 19.
    M. Jünger and P. Mutzel. Exact and heuristic algorithms for 2-layer straightline crossing minimization. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes in Computer Science, pages 337–348. Springer-Verlag, 1996.Google Scholar
  20. 20.
    E. Koutsofios and S. North. Drawing graphs with dot, 1993. dot user's manual. ftp://ftp.research.att.com/dist/drawdag/.Google Scholar
  21. 21.
    S. North. 5114 directed graphs, 1995. Manuscript. ftp://ftp.research.att.com/dist/drawdag/.Google Scholar
  22. 22.
    I. Rival. Reading, drawing, and order. In I. G. Rosenberg and G. Sabidussi, editors, Algebras and Orders, pages 359–404. Kluwer Academic Publishers, 1993.Google Scholar
  23. 23.
    K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–125, 1981.Google Scholar
  24. 24.
    R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete Comput. Geom., 1(4):321–341, 1986.Google Scholar
  25. 25.
    R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. Circuits Syst., CAS-36(9):1230–1234, 1989.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Ashim Garg
    • 2
  • Giuseppe Liotta
    • 2
  • Armando Parise
    • 3
  • Roberto Tamassia
    • 2
  • Emanuele Tassinari
    • 3
  • Francesco Vargiu
    • 4
  • Luca Vismara
    • 2
  1. 1.Dipartimento di Discipline Scientifiche, Sezione InformaticaUniversità degli Studi di Roma TreItaly
  2. 2.Center for Geometric Computing, Department of Computer ScienceBrown UniversityUSA
  3. 3.Dipartimento di Informatica e SistemisticaUniversità degli Studi di Roma “La Sapienza”Italy
  4. 4.Autorità per l'Informatica nella Pubblica AmministrazioneItaly

Personalised recommendations