Advertisement

Minimal relative normalization in orthogonal expression reduction systems

  • John Glauert
  • Zurab Khasidashvili
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1180)

Abstract

In previous papers, the authors studied normalization relative to desirable sets S of ‘partial results’, where it is shown that such sets must be stable. For example, the sets of normal forms, head-normal-forms, and weak head-normal-forms in the λ-calculus, are all stable. They showed that, for any stable S, S-needed reductions are S-normalizing. This paper continues the investigation into the theory of relative normalization. In particular, we prove existence of minimal normalizing reductions for regular stable sets of results. All the above mentioned sets are regular. We give a sufficient and necessary criterion for a normalizing reduction (w.r.t. a regular stable S) to be minimal. Finally, we establish a relationship between relative minimal and optimal reductions, revealing a conflict between minimality and optimality: for regular stable sets of results, a term need not possess a reduction that is minimal and optimal at the same time.

Keywords

Normal Form Relative Normalization Minimal Reduction Lambda Calculus Optimal Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AbOn93]
    Abramsky S., Ong C.-H. L. Full abstraction in the lazy lambda calculus. Inf.& Comp., 105:159–267, 1993.Google Scholar
  2. [AEH94]
    Antoy S., Echahed R., Hanus M. A needed narrowing strategy. In: Proc. of POPL'94, Portland, Oregon, 1994.Google Scholar
  3. [AnMi94]
    Antoy S. and Middeldorp A. A Sequential Reduction Strategy. In Proc. of ALP'94, Springer LNCS, vol. 850, p. 168–185, 1994.Google Scholar
  4. [AsLa93]
    Asperti A., Laneve C. Interaction Systems I: the theory of optimal reductions. MSCS, 11:1–48, Cambridge University Press, 1993.Google Scholar
  5. [Bar84]
    Barendregt H. P. The Lambda Calculus, its Syntax and Semantics. North-Holland, 1984.Google Scholar
  6. [BKKS87]
    Barendregt H. P., Kennaway J. R., Klop J. W., Sleep M. R. Needed Reduction and spine strategies for the lambda calculus. Inf.& Comp., 75(3):191–231, 1987.Google Scholar
  7. [BeLé79]
    Berry G., Lévy J.-J. Minimal and optimal computations of recursive programs. JACM 26, 1979, p. 148–175.Google Scholar
  8. [Bou85]
    Boudol G. Computational semantics of term rewriting systems. In: Algebraic methods in semantics. Nivat M., Reynolds J.C., eds. Cambr. Univ. Press, 1985, p. 169–236.Google Scholar
  9. [CuFe58]
    Curry H. B., Feys R. Combinatory Logic. vol. 1, North-Holland, 1958.Google Scholar
  10. [Gar94]
    Gardner P. Discovering needed reductions using type theory. In: Proc. of TACS'94, Springer LNCS, v. 789, M. Hagiya, J. C. Mitchell, eds. Sendai, 1994, p. 555–574.Google Scholar
  11. [GlKh94]
    Glauert J.R.W., Khasidashvili Z. Relative Normalization in Orthogonal Expression Reduction Systems. In: Proc. of CTRS'94, Springer LNCS, vol. 968, N. Dershowitz, N. Lindenstrauss, eds. Jerusalem, 1994, p. 144–165.Google Scholar
  12. [GlKh94a]
    Glauert J.R.W., Khasidashvili Z. Minimal and optimal relative normalization in Expression Reduction Systems. Report SYS-C94-06, UEA, Norwich, 1994.Google Scholar
  13. [GlKh96]
    Glauert J.R.W., Khasidashvili Z. Relative normalization in deterministic residual structures. In: Proc. of CAAP'96, Springer LNCS, vol. 1059, H. Kirchner, ed. 1996, p. 180–195.Google Scholar
  14. [GLM92]
    Gonthier G., Lévy J.-J., Melliès P.-A. An abstract Standardisation theorem. In: LICS'92, p. 72–81.Google Scholar
  15. [HuLé91]
    Huet G., Lévy J.-J. Computations in Orthogonal Rewriting Systems. In: Computational Logic, Essays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, eds. MIT Press, 1991.Google Scholar
  16. [Ken89]
    Kennaway J.R. Sequential evaluation strategy for parallel-or and related reduction systems. Annals of Pure and Applied Logic, 43:31–56, 1989.Google Scholar
  17. [KeSl89]
    Kennaway J. R., Sleep M. R. Neededness is hypernormalizing in regular combinatory reduction systems. Preprint, University of East Anglia, Norwich, 1989.Google Scholar
  18. [KKSV95]
    Kennaway J. R., Klop J. W., Sleep M. R., de Vries F.-J. Transfinite reductions in orthogonal term rewriting. Information and Computation, 119(1):18–38, 1995.Google Scholar
  19. [Kha88]
    Khasidashvili Z. Β-reductions and Β-developments of λ-terms with the least number of steps. In: Proc. of the Int. Conference on Computer Logic COLOG'88, Tallinn 1988, Springer LNCS, v. 417, P. Martin-Löf and G. Mints, eds. 1990, p. 105–111.Google Scholar
  20. [Kha92]
    Khasidashvili Z. The Church-Rosser theorem in Orthogonal Combinatory Reduction Systems. Report 1825, INRIA Rocquencourt, 1992.Google Scholar
  21. [Kha93]
    Khasidashvili Z. Optimal normalization in orthogonal term rewriting systems. In: Proc. of RTA'93, Springer LNCS, vol. 690, C. Kirchner, ed. Montreal, 1993, p. 243–258.Google Scholar
  22. [Kha94]
    Khasidashvili Z. On higher order recursive program schemes. In: Proc. of CAAP'94, Springer LNCS, vol. 787, S. Tison, ed. Edinburgh, 1994, p. 172–186.Google Scholar
  23. [KvO95]
    Khasidashvili Z., van Oostrom V. Context-sensitive conditional expression reduction systems. Electronic Notes in Theoretical Computer Science, vol. 2, A. Corradini, U. Montanari, eds. Elsevier, 1995, p. 141–150.Google Scholar
  24. [Klo80]
    Klop J. W. Combinatory Reduction Systems. Mathematical Centre Tracts n. 127, CWI, Amsterdam, 1980.Google Scholar
  25. [KOR93]
    Klop J. W., van Oostrom V., van Raamsdonk F. Combinatory reduction systems: introduction and survey. In: To Corrado Böhm, TCS 121:279–308, 1993.Google Scholar
  26. [Lév76]
    Lévy J.-J. An algebraic interpretation of the λΒK-calculus; and an application of a labelled λ-calculus. TCS 2(1):97–114, 1976.Google Scholar
  27. [Lév78]
    Lévy J.-J. Réductions correctes et optimales dans le lambda-calcul, Thèse de l'Université de Paris VII, 1978.Google Scholar
  28. [Lév80]
    Lévy J.-J. Optimal reductions in the Lambda-calculus. In: To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism, Hindley J. R., Seldin J. P. eds, Academic Press, 1980, p. 159–192.Google Scholar
  29. [Lon83]
    Longo G. Set theoretic models of lambda calculus: theories, expansions and isomorphisms. Annals of pure and applied logic, 24:153–188, 1983.Google Scholar
  30. [Mar91]
    Maranget L. Optimal derivations in weak λ-calculi and in orthogonal Term Rewriting Systems. In: Proc. POPL'91, p. 255–269.Google Scholar
  31. [Mar92]
    Maranget L. La stratégie paresseuse. Thèse de l'Université de Paris VII, 1992.Google Scholar
  32. [Nip93]
    Nipkow T. Orthogonal higher-order rewrite systems are confluent. In: Proc. of TLCA'93, Springer LNCS, vol. 664, Bazem M., Groote J.F., eds., 1993, p. 306–317.Google Scholar
  33. [Nök94]
    Nöcker E. Efficient Functional Programming. Compilation and Programming Techniques. Ph. D. Thesis, Katholic University of Nijmegen, 1994.Google Scholar
  34. [Oos94]
    Van Oostrom V. Confluence for Abstract and Higher-Order Rewriting. Ph.D. Thesis, Free University of Amsterdam, 1994.Google Scholar
  35. [Oos96]
    Van Oostrom V. Higher order families. In proc. of RTA'96, Springer LNCS, vol. 1103, Ganzinger, H., ed., 1996, p. 392–407.Google Scholar
  36. [OR94]
    Van Oostrom V., van Raamsdonk F. Weak orthogonality implies confluence: the higher-order case. In: Proc. of LFCS'94, Springer LNCS, vol. 813, Narode A., Matiyasevich Yu. V. eds. St. Petersburg, 1994. p. 379–392.Google Scholar
  37. [Raa96]
    Van Raamsdonk F. Confluence and normalisation for higher-order rewriting. Ph.D. Thesis, CWI Amsterdam, 1996.Google Scholar
  38. [SeRa93]
    Sekar R.C., Ramakrishnan I.V. Programming in Equational Logic: Beyond Strong Sequentiality. Information and Computation, 104(1):78–109, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • John Glauert
    • 1
  • Zurab Khasidashvili
    • 1
  1. 1.School of Information SystemsUEANorwichEngland

Personalised recommendations