Winskel is (almost) right

Towards a mechanized semantics textbook
  • Tobias Nipkow
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1180)


We present a formalization of the first 100 pages of Winskel's The Formal Semantics of Programming Languages in the theorem prover Isabelle/HOL: 2 operational, 2 denotational, 1 axiomatic semantics, a verification condition generator, and the necessary soundness, completeness and equivalence proofs, all for a simple imperative language.


Theorem Prover Rule Induction Verification Condition High Order Logic Denotational Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Bertot and R. Fraer. Reasoning with executable specifications. In TAPSOFT '95: Theory and Practice of Software Development, volume 915 of Lect. Notes in Comp. Sci., pages 531–545. Springer-Verlag, 1995.Google Scholar
  2. 2.
    M. Gordon. Programming Language Theory and its Implementation. Prentice-Hall, 1988.Google Scholar
  3. 3.
    M. Gordon. Mechanizing programming logics in higher order logic. In G. Birtwistle and P. Subrahmanyam, editors, Current Trends in Hardware Verification and Automated Theorem Proving. Springer-Verlag, 1989.Google Scholar
  4. 4.
    M. Gordon and T. Melham. Introduction to HOL: a theorem-proving environment for higher-order logic. Cambridge University Press, 1993.Google Scholar
  5. 5.
    P. V. Homeier and D. F. Martin. Trustworthy tools for trustworthy programs: A verified verification condition generator. In T. Melham and J. Camilleri, editors, Higher Order Logic Theorem Proving and its Applications, volume 859 of Lect. Notes in Comp. Sci., pages 269–284. Springer-Verlag, 1994.Google Scholar
  6. 6.
    H. Lötzbeyer and R. Sandner. Proof of the equivalence of the operational and denotational semantics of IMP in Isabelle/ZF. Project report, Institut für Informatik, TU München, 1994.Google Scholar
  7. 7.
    L. C. Paulson. Logic and Computation. Cambridge University Press, 1987.Google Scholar
  8. 8.
    L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lect. Notes in Comp. Sci. Springer-Verlag, 1994.Google Scholar
  9. 9.
    L. C. Paulson. Generic automatic proof tools. Technical Report 396, University of Cambridge, Computer Laboratory, 1996.Google Scholar
  10. 10.
    F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL um LCF. PhD thesis, Technische UniversitÄt München, 1994.Google Scholar
  11. 11.
    F. Regensburger. HOLCF: Higher Order Logic of Computable Functions. In E. Schubert, P. Windley, and J. Alves-Foss, editors, Higher Order Logic Theorem Proving and its Applications, volume 971 of Lect. Notes in Comp. Sci., pages 293–307. Springer-Verlag, 1995.Google Scholar
  12. 12.
    L. van Benthem Jutting. Checking Landau's “Grundlagen” in the AUTOMATH System. PhD thesis, Eindhoven University of Technology, 1977.Google Scholar
  13. 13.
    G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Tobias Nipkow
    • 1
  1. 1.Institut für InformatikTU MünchenMünchenGermany

Personalised recommendations