Advertisement

On recent trends in discrete geometry in computer science

  • Jean Françon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1176)

Abstract

This paper could be called “pieces on recent trends ...”. It is a set of remarks and thoughts about the actual and the potential development of discrete geometry; especially in computer imagery, and its interaction with geometrical modelling. My personnal view on some recent trends are exposed. It is rather a critical tutorial that emphasizes what I believe to be significative and promizing trends, among the enormous blossoming of researches and results. Thus, this paper is not a survey. Included remarks are particularly illustrated with papers taken from the DGCI conferences, from 1991 to 1996. General remarks are classified into three groups: On growing 3D discrete geometry: On the convergence of problems and their solutions in the subfields of image analysis and of computer graphics; On the trend toward more discrete geometry. These remarks end with some conclusions for future work. In a second part, the actual and the potential importance of combinatorial topology, arithmetic geometry, discrete linearity and piecewise linearity is studied and discussed. Conclusions, directions. and problems for future work are stated.

Keywords

Computer Graphic Planar Graph Discrete Geometry Jordan Curve Discrete Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Ahro95]
    E. Ahronowitz, J.-P. Aubert, C. Fiorio. Représentation topologique associée à l'analyse d'image, 5th DGCI Conference, Clermont-Ferrand, September 25–27, 1995.Google Scholar
  2. [Alex56]
    P.S. Alexandrov. Combinatorial topology, Vols 1, 2, 3. Graylock Press. 1956. 1957, 1960.Google Scholar
  3. [Aya95]
    R. Ayala, E. Dominguez, A.R. Francés, A. Quintero, J. Rubio. On surfaces in digital topology, 5th DGCI Conference. Clermont-Ferrand. September 25–27, 1995.Google Scholar
  4. [Baud89]
    P. Baudelaire, M. Gangnet, Planar maps: An interaction paradigm for graphic design, CHI'89 Proceedings, pp. 313–318, Addison-Wesley. 1989.Google Scholar
  5. [Beau91]
    D. Beauquier, M. Nivat, On translating one polyomino to tile the plane. Discrete & Comp. Geometry 6, pp. 575–592, 1991.Google Scholar
  6. [Bers90]
    J. Berstel, Tracé de droites, fractions continues et morphismes itérés, in M. Lothaire, “Mots”, Mélanges offerts à M.-P. Schützenberger. Hermès, pp.298–309. 1990.Google Scholar
  7. [BerG95]
    G. Bertrand, P-simple points: A solution for parallel thinning, 5th DGCI Conference, Clermont-Ferrand, September 25–27, 1995.Google Scholar
  8. [BerY93]
    Y. Bertrand, J.-F. Dufourd, J. Françon. P. Lienhardt. Algebraic specification and development in geometric modeling, TAPSOFT'93, Orsay, 1993.Google Scholar
  9. [Bor93]
    Ph. Borianne, M. Jeager, Représentation à base topologique sur un espace discret, third DGCI Conference, Strasbourg, September 20–21, 1993.Google Scholar
  10. [Bor94]
    Ph. Borianne, J. Françon, Reversible polyhedrization of discrete volumes, 4th DGCI Conference, Grenoble, September 19–21, 1994.Google Scholar
  11. [Braq91]
    J.-P. Braquelaire, P. Guitton, 2 1/2D scene update by insertion of contour. Computer & Graphics, 15 (1), pp. 41–48, 1991.Google Scholar
  12. [Cad91]
    C. Cadoz, A. Luciani, J.-L. Flourens, O. Raoult, Physique discrète, discrétisation du temps et de la matière, first DGCI Conference, Strasbourg, September 26–27, 1991.Google Scholar
  13. [Cair68]
    S.S. Cairns, Introductory Topology, The Ronald Press, 1968.Google Scholar
  14. [Chas91]
    J.-M. Chassery & A. Montanvert, Géométrie discrète en analyse d'images, Hermès, 1991.Google Scholar
  15. [Chas93]
    J.-M. Chassery, Forme convexe optimale incluse dans une forme simplement connexe, third DGCI Conference. Strasbourg, September 20–21, 1993.Google Scholar
  16. [Coh95]
    D. Cohen, A. Kaufman, Fundamentals of surface voxelisation. CVGIP: Graphics Models & Image Proc. 7 (6), pp. 453–461, 1995.Google Scholar
  17. [Deb92]
    I. Debled, J.-P. Reveilles, Un algorithme linéaire de polygonalisation de courbes discrètes, second DGCI Conference, Grenoble, September 17–18, 1992.Google Scholar
  18. [Deb94]
    I. Debled, J.-P. Reveilles, An incremental algorithm for digital plane recognition. 4th DGCI Conference, Grenoble, September 19–21, 1994.Google Scholar
  19. [Duf89]
    J.-F. Dufourd, C. Gross. J.-C. Spehner, Digitization algorithm for entry of planar maps, Proc. of Computer Graphics International'89, Leeds. U.K., 1989.Google Scholar
  20. [Duv95]
    S. Duval, M. Tajine, Digital geometry and fractal geometry, 5th DGCI Conference, Clermont-Ferrand, September 25–27. 1995.Google Scholar
  21. [Elt93]
    H. Elter, P. Lienhardt. Different combinatorial models based on the map concept for the representation of different types of cellular complexes. Modeling in Computer Graphics (Proc of the Conf. IFIP TC5/WG 5.10. Genoa, Italy, June 1993), B. Falcidieno. T.L. Kunii Eds., Springer, 1993.Google Scholar
  22. [Fior95]
    C. Fiorio, Ph. D., Université de Montpellier II. France, 1995.Google Scholar
  23. [Fra95]
    J. Françon, Discrete combinatorial surfaces. Graphical Models and Image Processing, 57. pp. 20–26, 1995.Google Scholar
  24. [Fra96a]
    J. Françon, Sur la topologie d'un plan arithmétique. Theor. Comp. Sc. 156. pp. 159–176, 1996.Google Scholar
  25. [Fra96b]
    J. Françon, J.-M. Schramm, M. Tajine. Recognizing arithmetic straight lines and planes. DGCI'96.Google Scholar
  26. [Hopc92]
    J.E. Hopcroft, P.J. Kahn, A paradigm for robust geometric algorithms, Algorithmica 7 (4). pp. 339–380, 1992.Google Scholar
  27. [Kauf93]
    A. Kaufman, D. Cohen, R. Yagel, Volume graphics. IEEE Computer 26 (7), pp. 51–64. 1993.Google Scholar
  28. [Ken96]
    Y. Kenmochi. A. Imiya, N. Ezquerra. Polyhedra generation from lattice points. DGCI'96.Google Scholar
  29. [Kha90a]
    E. Khalimski, R. Kopperman, P.R. Meyer. Computer graphics and connected topology on finite ordered sets, Topology and its Applications. 36. pp. 1–17, 1990.Google Scholar
  30. [Kha90b]
    E. Khalimski, R. Kopperman, P.R. Meyer, Boundaries in digital planes. J. of Appl. Math. and Stochastic Analysis. 3. pp. 27–55. 1990.Google Scholar
  31. [Kong89]
    T.Y. Kong, A. Rosenfeld. Digital geometry: Introduction and survey. CVGIP 48, pp. 357–393, 1989.Google Scholar
  32. [[Kong92]
    T.Y. Kong, A.W. Roscoe, A. Rosenfeld, Concepts of digital geometry, Special Issue on digital topology, Topology Applic. 46 (3), pp. 219–262, 1992.Google Scholar
  33. [Kop91]
    R. Kopperman, P.R. Meyer, R.G. Wilson. A Jordan surface theorem for three-dimensional digital spaces, Discrete and Comp. Geometry, 6, pp. 155–161. 1991.Google Scholar
  34. [Kov90]
    V.A. Kovalevsky, New definitions and fast recognition of digital straight line segments and arcs, Proc. of the 10th Intern. Conf. on Pattern Recognition. Atlantic City. June 17–21. IEEE Press, vol. II. pp. 31–34, 1990.Google Scholar
  35. [Kov92]
    V.A. Kovalevsky, Finite topology and Image Analysis, Advances in Electronics and Electron Physics. 84, pp. 197–259, 1992.Google Scholar
  36. [Kov93]
    V.A. Kovalevsky, Digital geometry based on the topology of abstract cell complexes, third DGCI Conference, Strasbourg, September 20–21, 1993.Google Scholar
  37. [Krop89]
    W.G. Kropatsch, H. Tockner. Detecting the straightness of digital curves in O(N) steps, Computer Vision, Graphics, and Image Processing 45, pp. 1–21, 1989.Google Scholar
  38. [Krop93]
    W.G. Kropatsch, M. Neuhauser, Discrete iterated chaining systems and fractal recovery from discrete signals, third DGCI Conference, Strasbourg, September 20–21. 1993.Google Scholar
  39. [Krop95]
    W.G. Kropatsch, H. Macho. Finding the structure of connected components using dual irregular pyramids, 5th DGCI Conference. Clermont-Ferrand. September 25–27, 1995.Google Scholar
  40. [Lef75]
    S. Lefschetz. Applications of Algebraic Topology, Springer, 1975.Google Scholar
  41. [Lien91]
    P. Lienhardt, Topological models for boundary representation: A comparison with n-dimensional generalized maps, Computer-Aided Design. 23. pp. 59–82, 1991.Google Scholar
  42. [Lien94]
    P. Lienhardt, N-Dimensional Generalized Combinatorial Maps and Cellular Quasi-Manifolds, Intern. J. of Comp. Geometry & Applications. 4 (3), pp. 275–324. 1994.Google Scholar
  43. [Lore87]
    W.E. Lorensen, H.E. Cline. Marching cubes: A high resolution 3D surface construction algorithm, Computer Graphics 21 (4), pp. 163–169, 1987.Google Scholar
  44. [Mala93]
    G. Malandain, G. Bertrand, N. Ayache, Topological segmentation of discrete surfaces, Intern. J. of Comp. Vision. 10 (2), pp. 183–197, 1993.Google Scholar
  45. [Malg93]
    R. Malgouyres, A definition of surfaces of Z3. third DGCI Conference. Strasbourg, September 20–21, 1993. See also; Ph. D., Université d'Auvergne. France. 1994.Google Scholar
  46. [Mig95]
    S. Miguet. L. Perroton, Discrete surfaces of 26-connected sets of voxels. 5th DGCI Conference. Clermont-Ferrand, September 25–27, 1995.Google Scholar
  47. [Morg81]
    D.G. Morgenthaler, A. Rosenfeld, Surfaces in three-dimensional digital images. Information and Control 51, pp. 227–247, 1981.Google Scholar
  48. [Pol88]
    E.J.D. Pol, M.E.A. Corthout, Point containment and the PHAROS chip. Ph.D. University of Leiden. 1992.Google Scholar
  49. [Rev91]
    J.P. Reveilles, Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d'état soutenue à l'Université Louis Pasteur. December 1991.Google Scholar
  50. [Rev93]
    J.-P. Reveilles, D. Richard. Ideal discrete geometry, third DGCI Conference. Strasbourg, September 20–21, 1993.Google Scholar
  51. [Riv94]
    N. Rivier, Discrete geometry in nature: Grain boundaries in flowers and metals. 4th DGCI Conference. Grenoble. September 19–21, 1994.Google Scholar
  52. [Ros96]
    A. Rosenfeld, Image Analysis and Computer Vision: 1995, Comp. Vision and Image Understanding 63 (3), pp. 568–612, 1996.Google Scholar
  53. [Roz92]
    M.N. Rozin, La programmation plane: programmation géométrique des ordinateurs massivement parallèles, second DGCI Conference. Grenoble. September 17–18. 1992.Google Scholar
  54. [Tut84]
    W.T. Tutte, Graph theory, Addison Wesley. 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jean Françon
    • 1
  1. 1.D'Informatique et de Télédétection Département d'InformatiqueLaboratoire des Sciences de l'ImageStrasbourg

Personalised recommendations