Advertisement

The density of states — A measure of the difficulty of optimisation problems

  • Helge Rosé
  • Werner Ebeling
  • Torsten Asselmeyer
Theoretical Foundations of Evolutionary Computation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1141)

Abstract

We introduce a classifying measure of fitness landscapes — the density of states — for continuous and discrete problems, especially optimisation of sequences and graphs. By means of the Boltzmann strategy we obtain a simple algorithm to calculate the density of states for a given problem. Knowing the density of states we are able to approximate the optimal fitness value of the problem which makes it feasible to assess the effectivity of practical optimisations.

Keywords

Fitness Function Fitness Landscape Optimal Fitness Practical Optimisation Genotype Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresen, B., 1989, Finite-Time Thermodynamics and Simulated Annealing, Proceedings of the Fourth International Conference on Irreversible Processes and Selforganization, Rostock.Google Scholar
  2. Asselmeyer, T., Ebeling, W. and Rosé, H., 1996, Smoothing representation of fitness landscapes — the genotype-phenotype map of evolution, BioSystems 39, 63.CrossRefPubMedGoogle Scholar
  3. Bernasconi, J., 1987, Low autocorrelation binary sequences: statistical mechanics and configuration space analysis, J. Physique 48, 559.Google Scholar
  4. Berry, R.S. and Kunz, R.E., 1993, Coexistence of Multiple Phases in Finite Systems, Phys. Rev. Lett. 71, 3987.CrossRefPubMedGoogle Scholar
  5. Boseniuk, T. and Ebeling, W., 1990, Boltzmann-, Darwin-and Haeckel-Strategies in Optimization Problems, (PPSN Dortmund).Google Scholar
  6. Boseniuk, T., Ebeling, W., Engel A., 1987, Boltzmann and Darwin Strategies in Complex Optimization, Phys. Lett. A 125, 307.Google Scholar
  7. Bouchard, J.P. and Mezard, M., 1994, J. Phys. France 4, 1109.CrossRefGoogle Scholar
  8. Conrad, M. and Ebeling, W., 1992, M.V. Volkenstein, Evolutionary thinking and the structure of fitness landscapes, BioSystems 27, 125.CrossRefPubMedGoogle Scholar
  9. Ebeling, W., Engel, A., Feistel, R., 1990, Physik der Evolutionsprozesse. (Akademie-Verlag, Berlin).Google Scholar
  10. Ebeling, W., Rosé, H., Schuchhardt, J., 1994, Evolutionary Strategies for Solving Frustrated Problems, Proceedings, IEEE-WCCI, Orlando, June 27–29 1994, 79–81.Google Scholar
  11. Fogel, L.J., 1962, Autonomous automata. Ind. Research 4, 14.Google Scholar
  12. Fogel, D.B., 1995, Evolutionary computation — toward a new philosophy of machine intelligence. IEEE Press, (Piscataway NJ).Google Scholar
  13. Golay, M.J.E., IEEE Transactions on Information Theory, IT-23, 43 (1977); IT-28, 543 (1982); IT-29, 934 (1983).CrossRefGoogle Scholar
  14. Goldberg D.E., 1989, Genetic Algorithms in search, optimization and machine learning, (Readin, MA: Addison-Wesley).Google Scholar
  15. Husemoller, D. and Milnor, J., 1973, Symmetric Bilinear Forms, (Springer Verlag, Berlin).Google Scholar
  16. Koza, J.R., 1992, Genetic programming: On the programming of computers by means of natural selection, (Cambridge, MA. MIT Press).Google Scholar
  17. Rechenberg, I., 1973, Evolutionsstrategien — Optimierung technischer Systeme nach Principien der biologischen Information, (Friedrich Frommann Verlag (Günther Holzboog K.G.) Stuttgart — Bad Cannstatt).Google Scholar
  18. Sibiani, P., Pedersen, K.M. and Hoffmann, K.H. and Salamon, P., 1990, Monte Carlo dynamics of optimization: A scaling description, Phys. Rev. A 42, 7080.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Helge Rosé
    • 1
  • Werner Ebeling
    • 1
  • Torsten Asselmeyer
    • 1
  1. 1.Institut of PhysicsHumboldt-University BerlinBerlinGermany

Personalised recommendations