Investigating a Parallel Breeder Genetic Algorithm on the inverse Aerodynamic design

  • I. De Falco
  • A. Della Cioppa
  • R. Del Balio
  • E. Tarantino
Applications of Evolutionary Computation Evolutionary Computation in Mechanical, Chemical, Biological, and Optical Engineering
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1141)

Abstract

Breeder Genetic Algorithms represent a class of random optimisation techniques gleaned from the science of population genetics, which have proved their ability to solve hard optimisation problems with continuous parameters. In this paper we test a parallel version of this technique against a sequential Breeder Genetic Algorithm on a typical inverse design problem in Aerodynamics, the problem of an aerofoil geometry recover starting from a target pressure distribution. Our results show that Parallel Breeder Genetic Algorithms are well suited for applications in Aerodynamics.

Keywords

Breeder Genetic Algorithms Aerodynamic Design Parallel Genetic Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. N. Vanderplaats, Numerical Optimization Techniques for Engineering Design: with Applications. McGraw Hill, New York, 1984.Google Scholar
  2. 2.
    G. S. Dulikravich, “Aerodynamic Shape Design and Optimization,” Tech. Rep. 91-0476, AIAA Paper, Jan. 1991.Google Scholar
  3. 3.
    P. D. Frank and G. R. Shubin, “A Comparison of Optimization-based Approaches for a Model Computational Aerodynamic Design Problem,” Boeing Computer Serv., Apr. 1990.Google Scholar
  4. 4.
    J. A. van Egmond, “Numerical Optimization of Target Pressure Distributions for Subsonic and Transonic Airfoil Design,” in Proceedings of AGARD Conference on Computational Methods for Aerodynamic Design (Inverse) and Optimization, no. 463, ref. 17, Mar. 1990.Google Scholar
  5. 5.
    J. H. Holland, Adaptation in Natural and Artificial Systems. MIT Press, 1975.Google Scholar
  6. 6.
    D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, Mass., 1989.Google Scholar
  7. 7.
    S. Obayashi and S. Takanashi, “Genetic Optimization of Target Pressure Distributions for Inverse Design Methods,” in Proceedings of the 12th AIAA Computational Fluid Dynamics Conference, San Diego, CA, Jun 19–22 1995.Google Scholar
  8. 8.
    I. De Falco, R. Del Balio, A. Della Cioppa and E. Tarantino, “A Parallel Genetic Algorithm for Transonic Airfoil Optimisation,” in Proceedings of the IEEE International Conference on Evolutionary Computing, Perth, University of Western Australia, Australia, pp. 429–434, 1995.Google Scholar
  9. 9.
    H. Mühlenbein and D. Schlierkamp-Voosen, “Analysis of Selection, Mutation and Recombination in Genetic Algorithms,” Neural Network World, vol. 3, pp. 907–933, 1993.Google Scholar
  10. 10.
    H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the breeder Genetic Algorithm I. Continuous Parameter Optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 25–49, 1993.Google Scholar
  11. 11.
    H. Mühlenbein and D. Schlierkamp-Voosen, “The Science of Breeding and its Application to the Breeder Genetic Algorithm,” Evolutionary Computation, vol. 1, pp. 335–360, 1994.Google Scholar
  12. 12.
    T. Bäck, F. Hoffmeister and H. Schwefel, “A Survey of Evolution Strategies,” in Proceedings of the 4th International Conference on Genetic Algorithms, (R. K. Belew, L. B. Booker, eds.), pp. 2–12, M. Kaufmann Publisher, 1991.Google Scholar
  13. 13.
    D. E. Rogers, Mathematical Elements for Computer Graphics. Addison-Wesley, Reading, Mass., 1989.Google Scholar
  14. 14.
    R. Tanese, “Distributed Genetic Algorithms,” in Proceedings of the 3rd International Conference on Genetic Algorithms, (J. D. Schaffer, ed.), pp. 434–439, M. Kaufmann Publisher, 1989.Google Scholar
  15. 15.
    B. Manderick and P. Spiessens, “Fine-grained Parallel Genetic Algorithms,” in Proceedings of the 3rd International Conference on Genetic Algorithms, (J. D. Schaffer, ed.), pp. 428–433, M. Kaufmann Publisher, 1989.Google Scholar
  16. 16.
    H. Mühlenbein, M. Schomisch and J. Born, “The Parallel Genetic Algorithm as Function Optimizer,” Parallel Computing, vol. 17, pp. 619–632, 1991.CrossRefGoogle Scholar
  17. 17.
    E. CantÚ-Paz, “A Summary of Research on Parallel Genetic Algorithms” IlliGAL Report, no. 95007, University of Illinois at Urbana-Champaign, USA, July 1995.Google Scholar
  18. 18.
    I. De Falco, R. Del Balio, A. Della Cioppa and E. Tarantino, “Breeder Genetic Algorithm for Airfoil Design Optimisation,” in Proceedings of the IEEE International Conference on Evolutionary Computing, Nagoya, Japan, pp. 71–75, 1996.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • I. De Falco
    • 1
  • A. Della Cioppa
    • 1
  • R. Del Balio
    • 1
  • E. Tarantino
    • 1
  1. 1.Research Institute on Parallel Information Systems (IRSIP) National Research Council of Italy (CNR)NaplesItaly

Personalised recommendations