Reporting red-blue intersections between two sets of connected line segments

  • Julien Basch
  • Leonidas J. Guibas
  • G. D. Ramkumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1136)

Abstract

We present a new line sweep algorithm, HeapSweep, for reporting bichromatic (‘purple’) intersections between a red and a blue family of line segments. If the union of the segments in each family is connected as a point set, HeapSweep reports all k purple intersections in time O((n+k)α(n) log 3n), where n is the total number of input segments and α(n) is the familiar inverse Ackermann function. To achieve these bounds, the algorithm keeps only partial information about the vertical ordering between segments of the same color, using a new data structure called a kinetic queue. In order to analyze the running time of HeapSweep, we also show that a simple polygon containing a set of n line segments can be partitioned into monotone regions by lines cutting these segments Θ(n log n) times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Agarwal. Partitioning arrangements of lines: II. Applications. Discrete Comput. Geom., 5:533–573, 1990.Google Scholar
  2. 2.
    P. K. Agarwal, M. de Berg, J. Matoušek, and O. Schwarzkopf. Constructing levels in arrangements and higher order Voronoi diagrams. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 67–75, 1994.Google Scholar
  3. 3.
    P. K. Agarwal and M. Sharir. Red-blue intersection detection algorithms, with applications to motion planning and collision detection. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 70–80, 1988.Google Scholar
  4. 4.
    C. Aragon and R. Seidel. Randomized search trees. In Proc. 30th Annu. IEEE Sympos. Found. Comput. Sci., pages 540–545, 1989.Google Scholar
  5. 5.
    J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. In preparation.Google Scholar
  6. 6.
    J. Basch, L.J. Guibas, G.D. Ramkumar, and L. Ramshaw. Polyhedral tracings and their convolution. In Proc. 2nd Workshop on Algorithmic Fundations of Robotics 1996.Google Scholar
  7. 7.
    J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput., C-28:643–647, 1979.Google Scholar
  8. 8.
    B. Chazelle. Filtering search: a new approach to query-answering. SIAM J. Comput., 15:703–724, 1986.CrossRefGoogle Scholar
  9. 9.
    B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. J. ACM, 39:1–54, 1992.CrossRefGoogle Scholar
  10. 10.
    B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for bichromatic line segment problems and polyhedral terrains. Algorithmica, 11:116–132, 1994.CrossRefGoogle Scholar
  11. 11.
    B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Snoeyink. Computing a face in an arrangement of line segments and related problems. SIAM J. Comput., 22:1286–1302, 1993.Google Scholar
  12. 12.
    K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete Comput. Geom., 4:387–421, 1989.Google Scholar
  13. 13.
    R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J. Comput., 16:61–77, 1987.Google Scholar
  14. 14.
    M. de Berg. Personal communication. 1996.Google Scholar
  15. 15.
    M. de Berg and O. Schwarzkopf. Cuttings and applications. Report RUU-CS-92-26, Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, August 1992.Google Scholar
  16. 16.
    H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Comput. Syst. Sci., 38:165–194, 1989. Corrigendum in 42 (1991), 249–251.CrossRefGoogle Scholar
  17. 17.
    H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph., 9:66–104, 1990.Google Scholar
  18. 18.
    H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional arrangements with applications. SIAM J. Comput., 15:271–284, 1986.MathSciNetGoogle Scholar
  19. 19.
    J. Erickson. New lower bounds for Hopcroft's problem. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 127–137, 1995.Google Scholar
  20. 20.
    L. Guibas, M. Overmars, and M. Sharir. Intersecting line segments, ray shooting, and other applications of geometric partitioning techniques. In Proc. 1st Scand. Workshop Algorithm Theory, volume 318 of Lecture Notes in Computer Science, pages 64–73. Springer-Verlag, 1988.Google Scholar
  21. 21.
    S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes. Combinatorica, 6:151–177, 1986.Google Scholar
  22. 22.
    H. G. Mairson and J. Stolfi. Reporting and counting intersections between two sets of line segments. In R. A. Earnshaw, editor, Theoretical Foundations of Computer Graphics and CAD, volume F40 of NATO ASI, pages 307–325. Springer-Verlag, Berlin, West Germany, 1988.Google Scholar
  23. 23.
    J. Matoušek. Spanning trees with low crossing number. Informatique Théorique et Applications, 25(2):103–123, 1991.Google Scholar
  24. 24.
    J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom., 10(2):157–182, 1993.Google Scholar
  25. 25.
    K. Mulmuley. On levels in arrangements and Voronoi diagrams. Discrete Comput. Geom., 6:307–338, 1991.Google Scholar
  26. 26.
    M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci., 23:166–204, 1981.CrossRefGoogle Scholar
  27. 27.
    Larry Palazzi and Jack Snoeyink. Counting and reporting red/blue segment intersections. In Proc. 3rd Workshop Algorithms Data Struct, volume 709 of Lecture Notes in Computer Science, pages 530–540, 1993.Google Scholar
  28. 28.
    M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Julien Basch
    • 1
  • Leonidas J. Guibas
    • 1
  • G. D. Ramkumar
    • 1
  1. 1.Department of Computer ScienceStanford UniversityStanfordUSA

Personalised recommendations