Computational aspects of curves of genus at least 2

  • Bjorn Poonen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)

Abstract

This survey discusses algorithms and explicit calculations for curves of genus at least 2 and their Jacobians, mainly over number fields and finite fields. Miscellaneous examples and a list of possible future projects are given at the end.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramovich, D., Formal finiteness and the torsion conjecture on elliptic curves. A footnote to a paper: ”Rational torsion of prime order in elliptic curves over number fields,” [Astérisque No. 228 (1995), 3, 81–100] by S. Kamienny and B. Mazur, Columbia University Number Theory Seminar (New York, 1992), Astérisque No. 228 (1995), 3, 5–17.Google Scholar
  2. 2.
    Abramovich, D., Uniformité des points rationnels des courbes algébriques sur les extensions quadratiques et cubiques, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), no. 6, 755–758.Google Scholar
  3. 3.
    Adleman, L. and Huang, M.-D., Primality testing and abelian varieties over finite fields, Lecture Notes in Math.1512, Springer-Verlag, Berlin, 1992.Google Scholar
  4. 4.
    Adleman, L. and Huang, M.-D., Counting rational points on curves and abelian varieties over finite fields (extended abstract), in this volume.Google Scholar
  5. 5.
    Adleman, L., DeMarrais, J. and Huang, M.-D., A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields, Algorithmic number theory (Ithaca, NY, 1994), 28–40, Lecture Notes in Comput. Sci.877, Springer, Berlin, 1994.Google Scholar
  6. 6.
    Birch, B. and Kuyk, W. (eds.), Modular functions of one variable IV, Lecture Notes in Math.476, Springer-Verlag, 1975.Google Scholar
  7. 7.
    Baker, A. and Coates, J., Integer points on curves of genus 1, Proc. Cambridge Philos. Soc.67 (1970), 595–602.Google Scholar
  8. 8.
    Bertrand, L., Computing a hyperelliptic integral using arithmetic in the Jacobian of the curve, Appl. Algebra Engrg. Comm. Comput.6 (1995), no. 4–5, 275–298.Google Scholar
  9. 9.
    Birch, B. and Merriman, J. R., Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. (3) 24 (1972), 385–394.Google Scholar
  10. 10.
    Bost, J.-B. and Mestre, J.-F., Moyenne arithmético-géométrique et périodes des courbes de genre 1 et 2, Gaz. Math., No. 38 (1988), 36–64.Google Scholar
  11. 11.
    Bremner, A., Some quartic curves with no points in any cubic field, Proc. London Math. Soc. (3)52 (1986), no. 2, 193–214.Google Scholar
  12. 12.
    Bremner, A. and Jones, J., On the equation \(x^4 + mx^2 y^2 + y^4 = z^2 \), J. Number Theory50 (1995), no. 2, 286–298.Google Scholar
  13. 13.
    Bremner, A., Lewis, D. J., and Morton, P., Some varieties with points only in a field extension, Arch. Math. (Basel)43 (1984), no. 4, 344–350.Google Scholar
  14. 14.
    Brumer, A., The rank of J0(N), Columbia University Number Theory Seminar (New York, 1992), Astérisque No. 228 (1995), 3, 41–68.Google Scholar
  15. 15.
    Brumer, A., Curves with real multiplications, in preparation.Google Scholar
  16. 16.
    Cantor, D. G., Computing in the Jacobian of a hyperelliptic curve, Math. Comp.48 (1987), 95–101.Google Scholar
  17. 17.
    Cantor, D. G., On the analogue of the division polynomials for hyperelliptic curves, J. Reine Angew. Math.447 (1994), 91–145.Google Scholar
  18. 18.
    Caporaso, L., Harris, J. and Mazur, B., Uniformity of rational points, to appear in J. Amer. Math. Soc.Google Scholar
  19. 19.
    Caporaso, L., Harris, J. and Mazur, B., How many rational points can a curve have?, The moduli space of curves (Texel Island, 1994), 13–31, Progr. Math.129, Birkhäuser, Boston, 1995.Google Scholar
  20. 20.
    Cassels, J. W. S., The Mordell-Weil group of curves of genus 2., in: M. Artin, J. Tate (eds.), Arithmetic and Geometry I, Birkhäuser, Boston, (1983), 27–60.Google Scholar
  21. 21.
    Cassels, J. W. S., The arithmetic of certain quartic curves, Proc. Roy. Soc. Edinburgh100A (1985), 201–218.Google Scholar
  22. 22.
    Cassels, J. W. S. and Flynn, E. V., Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc., Lecture Notes, Cambridge Univ. Press, 1996.Google Scholar
  23. 23.
    Chabauty, C., Sur les points rationnels des courbes algébriques de genre supérieur à l'unité, Comptes Rendus Hebdomadaires des Séances de l'Acad. des Sci., Paris212 (1941), 882–885.Google Scholar
  24. 24.
    Chevalley, C. and Weil, A., Un théorème d'arithmétiques sur les courbes algébriques, Comptes Rendus Hebdomadaires des Séances de l'Acad. des Sci., Paris195 (1930), 570–572.Google Scholar
  25. 25.
    Coates, J., Construction of rational functions on a curve, Proc. Cambridge Philos. Soc.68 (1970), 105–123.Google Scholar
  26. 26.
    Coleman, R. F., Effective Chabauty, Duke Math. J.52 (1985), 765–780.Google Scholar
  27. 27.
    Coombes, K. R. and Grant, D. R., On heterogeneous spaces, J. London Math. Soc. (2)40 (1989), no. 3, 385–397.Google Scholar
  28. 28.
    Couveignes, J.-M., Quelques calcules en théorie des nombres, Thèse, Université de Bordeaux I, 1994.Google Scholar
  29. 29.
    Cremona J., Algorithms for modular elliptic curves, Cambridge Univ. Press, 1992.Google Scholar
  30. 30.
    Davenport, J. H., On the integration of algebraic functions, Lecture Notes in Computer Science102, Springer-Verlag, 1981.Google Scholar
  31. 31.
    de Weger, B. M. M., A hyperelliptic Diophantine equation related to imaginary quadratic number fields with class number 2, J. Reine Angew. Math.427 (1992), 137–156. Correction: J. Reine Angew. Math.441 (1993), 217–218.Google Scholar
  32. 32.
    Dem'janenko, V., Rational points on a class of algebraic curves, Amer. Math. Soc. Transl.66 (1968), 246–272.Google Scholar
  33. 33.
    Elkies, N. D., Heegner point computations, Algorithmic number theory (Ithaca, NY, 1994), 122–133, Lecture Notes in Comput. Sci.877, Springer, Berlin, 1994.Google Scholar
  34. 34.
    Elkies, N. D., Remarks on elliptic K-curves, preprint, 1993.Google Scholar
  35. 35.
    Evertse, J.-H. and Györy, K., Effective finiteness results for binary forms with given discriminant, Compositio Math.79 (1991), no. 2, 169–204.Google Scholar
  36. 36.
    Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983), 349–366. Erratum: Invent. Math.75 (1984), 381.Google Scholar
  37. 37.
    Flynn, E. V., The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field., Math. Proc. Camb. Phil. Soc.107 (1990), 425–441.Google Scholar
  38. 38.
    Flynn, E. V., Large rational torsion on abelian varieties, J. Number Theory36 (1990), 257–265.Google Scholar
  39. 39.
    Flynn, E. V., Sequences of rational torsions on abelian varieties, Invent. Math.106 (1991), 433–442.Google Scholar
  40. 40.
    Flynn, E. V., The group law on the Jacobian of a curve of genus 2., J. Reine Angew. Math.439 (1993), 45–69.Google Scholar
  41. 41.
    Flynn, E. V., Descent via isogeny in dimension 2, Acta Arith.66 (1994), 23–43.Google Scholar
  42. 42.
    Flynn, E. V., An explicit theory of heights, Trans. Amer. Math. Soc.347 (1995), 3003–3015.Google Scholar
  43. 43.
    Flynn, E. V., On a theorem of Coleman, Manuscr. Math.88 (1995), 447–456.Google Scholar
  44. 44.
    Flynn, E. V., A flexible method for applying Chabauty's Theorem, to appear in Compositio Math.Google Scholar
  45. 45.
    Flynn, E. V., Poonen, B., and Schaefer, E., Cycles of quadratic polynomials and rational points on a genus 2 curve, preprint, 1995.Google Scholar
  46. 46.
    Goppa, V. D., Geometry and codes, volume 24 of Mathematics and its applications (Soviet series), Kluwer Acad. Publ., 1988.Google Scholar
  47. 47.
    Gordon, D. and Grant, D., Computing the Mordell-Weil rank of Jacobians of curves of genus two, Trans. Amer. Math. Soc.337 (1993), 807–824.Google Scholar
  48. 48.
    Grant, D., Formal groups in genus 2, J. Reine Angew. Math.411 (1990), 96–121.Google Scholar
  49. 49.
    Grant, D., A curve for which Coleman's effective Chabauty bound is sharp, Proc. Amer. Math. Soc.122 (1994), 317–319.Google Scholar
  50. 50.
    Huang, M.-D. and Ierardi, D., Efficient algorithms for the effective Riemann-Roch problem and for addition in the Jacobian of a curve, J. Symbolic Comput.18 (1994), 519–539.Google Scholar
  51. 51.
    Huang, M.-D. and Ierardi, D., Counting rational points on curves over finite fields, IEEE Symposium on the Foundations of Computer Science, Palo Alto, CA, November 1993.Google Scholar
  52. 52.
    Kamienny, S. and Mazur, B., Rational torsion of prime order in elliptic curves over number fields, Columbia University Number Theory Seminar (New York, 1992), Astérisque No. 228 (1995), 3, 81–100.Google Scholar
  53. 53.
    Katz, N., Galois properties of torsion points on abelian varieties, Invent. Math.62 (1981), no. 3, 481–502.Google Scholar
  54. 54.
    Keller, W. and Kulesz, L., Courbes algébriques de genre 2 et 3 possedant de nombreux points rationnels, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), no. 11, 1469–1472.Google Scholar
  55. 55.
    Klassen, M. and Schaefer, E., Arithmetic and geometry of the curve y3+1=x4, to appear in Acta Arith.Google Scholar
  56. 56.
    Koblitz, N., Hyperelliptic cryptosystems, J. Cryptology1 (1989), no. 3, 139–150.Google Scholar
  57. 57.
    Kulesz, L., Courbes algébriques de genre 2 possedant de nombreux points rationnels, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), no. 1, 91–94.Google Scholar
  58. 58.
    Laska, M., Elliptic curves over number fields with prescribed reduction type, Aspects of Mathematics, E4. Priedr. Vieweg & Sohn, Braunschweig; distributed by Heyden & Son, Inc., Philadelphia, Pa., 1983.Google Scholar
  59. 59.
    Leprévost, F., Famille de courbes de genre 2 munies d'une classe de diviseurs rationnels d'ordre 13, C. R. Acad. Sci. Paris Sér. I Math.313 (1991), 451–454.Google Scholar
  60. 60.
    Leprévost, F., Familles de courbes de genre 2 munies d'une classe de diviseurs rationnels d'ordre 15, 17, 19 ou 21, C. R. Acad. Sci. Paris Sér. I Math.313 (1991), 771–774.Google Scholar
  61. 61.
    Leprévost, F., Torsion sur des familles de courbes de genre g, Manuscripta Math.75 (1992), 303–326.Google Scholar
  62. 62.
    Leprévost, F., Famille de courbes hyperelliptiques de genre g munies d'une classe de diviseurs rationnels d'ordre 2g2+4g+1, Seminaire de Théorie des Nombres, 1991–92, 107–119, Progr. Math. 116, Birkhäuser, 1993.Google Scholar
  63. 63.
    Leprévost, F., Points rationnels de torsion de jacobiennes de certaines courbes de genre 2, C. R. Acad. Sci. Paris Sér. I Math.316 (1993), 819–821.Google Scholar
  64. 64.
    Leprévost, F., Sur une conjecture sur les points de torsion rationnels des jacobiennes de courbes, to appear in J. Reine Angew. Math.Google Scholar
  65. 65.
    Leprévost, F., Sur certains sous-groupes de torsion de jacobiennes de courbes hyperelliptiques de genres g≥1, preprint, 1996.Google Scholar
  66. 66.
    Lercier, R. and Morain, F., Counting the number of points on elliptic curves over finite fields: strategies and performances, Advances in cryptology — EUROCRYPT '95 (Saint-Malo, 1995), 79–94, Lecture Notes in Comput. Sci.921, Springer, Berlin, 1995.Google Scholar
  67. 67.
    Lercier, R. and Morain, F., Counting points on elliptic curves over 304-02 using Couveignes's algorithm, preprint, 1995.Google Scholar
  68. 68.
    Liu, Q., Modèles minimaux des courbes de genre deux, J. Reine Angew. Math.453 (1994), 137–164.Google Scholar
  69. 69.
    Liu, Q., Conducteur et discriminant minimal de courbes de genre 2, Compositio Math.94 (1994), no. 1, 51–79.Google Scholar
  70. 70.
    Liu, Q., Modèles entiers d'une courbe hyperelliptique sur un corps de valuation discrete, to appear in Trans. Amer. Math. Soc.Google Scholar
  71. 71.
    Manin, J., The p-torsion of elliptic curves is uniformly bounded, Isv. Akad. Nauk. SSSR Ser. Mat.33 (1969); Amer. Math. Soc. Transl., 433–438.Google Scholar
  72. 72.
    Mazur, B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math.47 (1977), 33–186 (1978).Google Scholar
  73. 73.
    Mazur, B. and Tate, J., Points of order 13 on elliptic curves, Invent. Math.22 (1973/74), 41–49.Google Scholar
  74. 74.
    McCallum, W., On the Shafarevich-Tate group of the Jacobian of a quotient of the Fermat curve, Invent. Math.93 (1988), no. 3, 637–666.Google Scholar
  75. 75.
    McCallum, W., On the method of Coleman and Chabauty, Math. Ann.299 (1994), no. 3, 565–596.Google Scholar
  76. 76.
    Merel, L., Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math.124 (1996), no. 1–3, 437–449.Google Scholar
  77. 77.
    Merriman, J. R., Binary forms and the reduction of curves, D. Phil. thesis, Oxford Univ., 1970.Google Scholar
  78. 78.
    Merriman, J. R. and Smart, N. P., Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point, Math. Proc. Camb. Phil. Soc.114 (1993), 203–214. Corrigenda: Math. Proc. Camb. Phil. Soc.118 (1995), 189.Google Scholar
  79. 79.
    Mestre, J.-F., Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math.58 (1986), no. 2, 209–232.Google Scholar
  80. 80.
    Mestre, J.-F., Courbes hyperelliptiques à multiplications réelles, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988), Exp. No. 34, 6 pp., Univ. Bordeaux I, Talence.Google Scholar
  81. 81.
    Mestre, J.-F., Courbes hyperelliptiques à multiplications réelles, C. R. Acad. Sci. Paris Sér. I Math.307 (1988), no. 13, 721–724.Google Scholar
  82. 82.
    Mestre, J.-F., Construction de courbes de genre 2 a partir de leurs modules, Effective methods in algebraic geometry (Castiglioncello, 1990), 313–334, Progr. Math.94, Birkhäuser Boston, Boston, MA, 1991.Google Scholar
  83. 83.
    Milne, J. S., Abelian Varieties, in: Cornell, G., Silverman, J.H. (eds.), Arithmetic geometry, 103–150, Springer-Verlag, New York, 1986.Google Scholar
  84. 84.
    Milne, J. S., Jacobian Varieties, in: Cornell, G., Silverman, J.H. (eds.), Arithmetic geometry, 167–212, Springer-Verlag, New York, 1986.Google Scholar
  85. 85.
    Mordell, L. J., On some sextic diophantine equations of genus 2, Proc. Amer. Math. Soc.21 (1969), 347–350.Google Scholar
  86. 86.
    Mumford, D., On the equations defining abelian varieties I, Invent. Math.1 (1966), 287–354.Google Scholar
  87. 87.
    Mumford, D., On the equations defining abelian varieties II, Invent. Math.3 (1966), 75–135.Google Scholar
  88. 88.
    Mumford, D., On the equations defining abelian varieties III, Invent. Math.3 (1966), 215–244.Google Scholar
  89. 89.
    Murabayashi, N., On normal forms of modular curves of genus 2, Osaka J. Math29 (1992), 405–418.Google Scholar
  90. 90.
    Namikawa, Y. and Ueno, K., The complete classification of fibres in pencils of curves of genus two, Manuscripta Math.9 (1973), 143–186.Google Scholar
  91. 91.
    Ogawa, H., Curves of genus 2 with a rational torsion divisor of order 23, Proc. Japan Acad. Ser. A Math. Sci.70 (1994), 295–298.Google Scholar
  92. 92.
    Ogg, A., Abelian curves of 2-power conductor, Math. Proc. Camb. Phil. Soc.62 (1966), 143–148.Google Scholar
  93. 93.
    Ogg, A., On pencils of curves of genus two, Topology5 (1966), 355–362.Google Scholar
  94. 94.
    Ogg, A., Rational points on certain elliptic modular curves, Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 221–231, Amer. Math. Soc., Providence, R.I., 1973.Google Scholar
  95. 95.
    Oort, F., Hyperelliptic curves over number fields, in H. Popp (ed.), Classification of algebraic varieties and compact complex manifolds, Springer-Verlag, 1974, 211–218.Google Scholar
  96. 96.
    Pacelli, P., Uniform boundedness for rational points, preprint, 1996.Google Scholar
  97. 97.
    Parshin, A. N., Minimal models of curves of genus 2, and homomorphisms of abelian varieties defined over a field of finite characteristic, Math. of USSR. Izvestija6 (1972), 65–108.Google Scholar
  98. 98.
    Pila, J., Frobenius maps of abelian varieties and finding roots of unity in finite fields, Math. Comp.55 (1990), no. 192, 745–763.Google Scholar
  99. 99.
    Poonen, B., The classification of rational preperiodic points of quadratic polynomials over ℚ, preprint, 1996.Google Scholar
  100. 100.
    Pyle, E., Abelian varieties over ℚ with large endomorphism algebras and their simple components over ℚ, Ph. D. thesis, Univ. of Calif. at Berkeley, 1995.Google Scholar
  101. 101.
    Rodriguez-Villegas, F., Arithmetic intersection in a Siegel threefold, in preparation.Google Scholar
  102. 102.
    Schaefer, E. F., 2-descent on the Jacobians of hyperelliptic curves, J. Number Theory51 (1995) 219–232.Google Scholar
  103. 103.
    Schoof, R., Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp.44 (1985), no. 170, 483–494.Google Scholar
  104. 104.
    Shafarevich, I., Algebraic number fields, Proc. Internat. Congr. Math., Stockholm 1962, Institute Mittag-Leffler, Djursholm, 1963, 163–176. English translation: Amer. Math. Soc. Transl. (2) 31 (1963), 25–39.Google Scholar
  105. 105.
    Shimura, G., On the field of rationality for an abelian variety, Nagoya Math. J.45 (1972), 167–178.Google Scholar
  106. 106.
    Silverman, J., Rational points on certain families of curves of genus at least 2, Proc. London Math. Soc. (3)55 (1987), no. 3, 465–481.Google Scholar
  107. 107.
    Silverman, J., Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1994.Google Scholar
  108. 108.
    Smart, N. P., S-unit equations, binary forms and curves of genus 2, preprint, 1996.Google Scholar
  109. 109.
    Stahlke, C., Algebraic curves over ℚ with many rational points and minimal automorphism group, preprint, 1996.Google Scholar
  110. 110.
    Stoll, M., Two simple 2-dimensional abelian varieties defined over ℚ with Mordell-Weil group of rank at least 19, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), 1341–1345.Google Scholar
  111. 111.
    Taylor, R. and Wiles, A., Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2)141 (1995), no. 3, 553–572.Google Scholar
  112. 112.
    Top, J., Hecke L-series related with algebraic cycles or with Siegel modular forms, Ph. D. thesis, Utrecht, 1989.Google Scholar
  113. 113.
    Tsfasman, M. A. and Vladut, S. G., Algebraic geometric codes, volume 58 of Mathematics and its applications (Soviet series), Kluwer Acad. Publ., 1991.Google Scholar
  114. 114.
    Volcheck, E., Computing in the Jacobian of a plane algebraic curve, Algorithmic number theory (Ithaca, NY, 1994), 221–233, Lecture Notes in Comput. Sci.877, Springer, Berlin, 1994.Google Scholar
  115. 115.
    Volcheck, E., Addition in the Jacobian of a curve over a finite field, preprint, 1995.Google Scholar
  116. 116.
    Wiles, A., Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2)141 (1995), no. 3, 443–551.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Bjorn Poonen
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations