On integral basis reduction in global function fields

  • M. E. Pohst
  • M. Schörnig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campillo, A.: Algebroid curves in positive characteristic; Springer-Verlag; Berlin-Heidelberg-New York; 1980Google Scholar
  2. 2.
    Coates, J.: Construction of rational functions on a curve; Proc. Camb. Phil. Soc., No. 68; 1970; 105–123Google Scholar
  3. 3.
    Cohn, P. M.: Algebraic numbers and algebraic functions; Chapman & Hall; London-New York-Tokyo-Melbourne-Madras; 1991Google Scholar
  4. 4.
    Griffiths, D.: Series expansion of algebraic functions; in: Bosma, W.; van der Poorten, A. (eds.): Computational algebra and number theory; Kluwer Academic Publishers; Boston-Dordrecht-London; 1995Google Scholar
  5. 5.
    KANT group: KANT V4; to appear in J. Symb. Comput.Google Scholar
  6. 6.
    Lenstra, A. K.; Lenstra, H. W. Jr.; Lovász, L.: Factoring polynomials with rational coefficients; Math. Ann., Vol. 261; 1982; 515–534Google Scholar
  7. 7.
    Mahler, K.: An analogue to Minkowski's geometry of numbers in a field of series; Ann. Math., Vol. 42; No. 2; 1941; 488–522Google Scholar
  8. 8.
    Pohst, M. E.: Computational algebraic number theory; Birkhäuser Verlag; Basel-Boston-Berlin; 1993Google Scholar
  9. 9.
    Pohst, M.; Zassenhaus, H.: Algorithmic algebraic number theory; Cambridge University Press; Cambridge-New York-Melbourne; 1989Google Scholar
  10. 10.
    Ribowicz, M.: Calcul de paramétrisation de courbes algébriques: Les développements de Hamburger-Noether; Rapport de recherche RR 798-M; TIM 3/IMAG Informatique et Mathématiques Appliquées de Grenoble; 1989Google Scholar
  11. 11.
    Schmidt, W. M.: Construction and estimation of bases in function fields; J. Number Th. 39, No. 2; 1991; 181–224Google Scholar
  12. 12.
    Walker, R. J.: Algebraic curves; Springer-Verlag; New York-Heidelberg-Berlin; 1978Google Scholar
  13. 13.
    Weiss, E.: Algebraic number theory; Chelsea Publishing Company; New York; 1976Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. E. Pohst
    • 1
  • M. Schörnig
    • 1
  1. 1.Sekr. MA 8-1, FB 3 MathematikTechnische Universität BerlinBerlinF.R.G.

Personalised recommendations