An algorithm of subexponential type computing the class group of quadratic orders over principal ideal domains

  • Sachar Paulus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)


We present an algorithm which computes the class group of a quadratic order over a principal ideal domain that fulfills some properties which are implicated by computational requirements. It is a generalization of the subexponential method of Hafner and McCurley which computes the class group of an order in an imaginary quadratic number field. We discuss the concept of reduction theory of binary quadratic forms over a Euclidean domain which makes our algorithm practical. Several examples of principal ideal domains are given for which we have applied our generic algorithm implemented in C++ using template techniques.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Adleman, J. DeMarrais, M.-D. Huang: A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields. In: Lecture Notes in Computer Science 877: Proceedings of ANTS-I, pp. 28–40. Berlin, Heidelberg: Springer Verlag 1994.Google Scholar
  2. 2.
    E. Artin: Quadratische Körper im Gebiete der höheren Kongruenzen I. Mathematische Zeitschrift 19 (1924), pp. 153–206. In: S. Lang, J. Tate (eds.): The collected papers of Emil Artin. Reading, Mass.: Addison-Wesley 1965.Google Scholar
  3. 3.
    J. Buchmann, S. Paulus: Algorithms for finite abelian groups. Extended Abstract. To be published in the proceedings of NTAMCS 93.Google Scholar
  4. 4.
    D. G. Cantor: Computing in the Jacobian of a hyperelliptic curve. Mathematics of Computation 48 (1987), pp. 95–101.Google Scholar
  5. 5.
    H. Cohen: Algorithms for modules over Dedekind domains and relative extensions of number fields. Preprint.Google Scholar
  6. 6.
    R. Flassenberg, S. Paulus: Computing the rational subgroup of the Jacobian of a hyperelliptic curve over a finite field using sieving techniques. In preparation.Google Scholar
  7. 7.
    C. F. Gauß: Disquisitiones Arithmeticae. Leipzig: Fleischer 1801.Google Scholar
  8. 8.
    J. L. Hafner, K. S. McCurley: A rigorous subexponential algorithm for the computation of class groups. Journal of the AMS 2 (1989), pp. 837–850.Google Scholar
  9. 9.
    F. Lemmermeyer: The euclidean algorithm in algebraic number fields. Expositiones Math. 13 (1995), pp. 385–416.Google Scholar
  10. 10.
    T. Papanikolaou et al.: LiDIA-Manual. Anonymous ftp: crypt1.cs.uni-sb.deGoogle Scholar
  11. 11.
    S. Paulus: Algorithmen für endliche abelsche Gruppen. Diplomarbeit. Universität des Saarlandes: 1992.Google Scholar
  12. 12.
    S. Paulus: Ein Algorithmus zur Berechnung der Klassengruppe quadratischer Ordnungen über Hauptidealringen. Dissertation. Universität Essen: 1995.Google Scholar
  13. 13.
    M. Seysen: A Probabilistic Factorization Algorithm with Quadratic Forms of Negative Discriminant. Mathematics of Computation 48 (1987), pp. 757–780.Google Scholar
  14. 14.
    D. Shanks: Class Number, A Theory of Factorization and Genera. Proceedings of Symposia in Pure Mathematics 20 (1970), pp. 415–440.Google Scholar
  15. 15.
    D. B. Zagier: Zetafunktionen und quadratische Körper. Berlin; Heidelberg; New York: Springer 1981.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Sachar Paulus
    • 1
  1. 1.Institute for Experimental MathematicsUniversity of EssenEssenGermany

Personalised recommendations