Old and new deterministic factoring algorithms

  • James McKee
  • Richard Pinch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)

Abstract

This paper contains a brief review of some old deterministic factoring algorithms, and describes two new ones. The algorithms discussed are true algorithms: given a positive integer n, they will either find a non-trivial factor of n, or, by failing to do so, will prove n to be prime. One of the new algorithms removes the Monte Carlo element from a method of Pollard, involving discrete logarithms mod n. The other generalises an idea of Lehmer for speeding up Fermat's factoring method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brillhart, J., Selfridge, J.L.: Some factorizations of 2n±1 and related results. Math. Comp. 21 (1967) 87–96Google Scholar
  2. 2.
    Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. (preprint).Google Scholar
  3. 3.
    Lehman, R.S.: Factoring large integers. Math. Comp. 28 (1974) 637–646Google Scholar
  4. 4.
    Lenstra, Jr., H.W.: Divisors in residue classes. Math. Comp. 42 (1984) 331–340Google Scholar
  5. 5.
    McKee, J.F.: Turning Euler's factoring method into a factoring algorithm. Bull. London Math. Soc. (to appear)Google Scholar
  6. 6.
    McKee, J.F.: A √q/p factoring method. (in preparation)Google Scholar
  7. 7.
    Pollard, J.M.: Theorems on factorization and primality testing. Proc. Cambridge Phil. Soc. 76 (1974) 521–528Google Scholar
  8. 8.
    Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Comp. 32 (1978) 918–924Google Scholar
  9. 9.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21 (1978)Google Scholar
  10. 10.
    Schoof, R.J.: Quadratic fields and factorization. Computational Methods in Number Theory, Part II, edited by H.W. Lenstra, Jr. and R. Tijdeman, Mathematical Centre Tracts 155, Mathematisch Centrum, Amsterdam (1982)Google Scholar
  11. 11.
    Shanks, D.: Class number, a theory of factorization and genera. Proc. Symp. Pure Math. 20 AMS (1971) 415–440Google Scholar
  12. 12.
    Strassen, V.: Einige Resultate über Berechnungskomplexität. Jahresber. Deutsch. Math.-Verein. 78 (1976/77) 1–8Google Scholar
  13. 13.
    Turk, J.W.M.: Fast arithmetic operations on numbers and polynomials. Computational Methods in Number Theory, Part I, edited by H.W. Lenstra, Jr. and R. Tijdeman, Mathematical Centre Tracts 154, Mathematisch Centrum, Amsterdam (1982)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • James McKee
    • 1
  • Richard Pinch
    • 1
  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeEngland

Personalised recommendations