A genetic model and the Hopfield networks

  • A. Bertoni
  • P. Campadelli
  • M. Carpentieri
  • G. Grossi
Poster Presentations 1 Theory I: Associative Memory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1112)

Abstract

In this paper a genetic model is presented and the dynamics in the thermodynamic limit is derived. Analogies and differences with neural networks are discussed and attractors of the genetic model are characterized as equilibria points of Hopfield's networks. The neural network and the genetic system are experimentally compared as approximate algorithms for the MAX-CUT problem.

Keywords

Hopfield's networks genetic algorithms optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Alberti, A. Bertoni, P. Campadelli, G. Grossi, R. Posenato, A Neural Algorithm for MAX-2SAT: Performance Analysis and Circuit Implementation, to be published on Neural Networks.Google Scholar
  2. 2.
    G. Ausiello, P. Crescenzi, M. Protasi, Approximate Solution of NP Optimization Problems, Theoretical Computer Science, Vol. 150, 1995.Google Scholar
  3. 3.
    A. E. Eiben, E. H. L. Aarts, K. M. van Hee, Global Convergence of Genetic Algorithms: a Markov Chain Analysis, Parallel Problem Solving from Nature, 1st Workshop PPSN I, Berlin, 1991.Google Scholar
  4. 4.
    M. R. Garey, D. S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., San Francisco, 1979.Google Scholar
  5. 5.
    D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.Google Scholar
  6. 6.
    D. E. Goldberg, P. Segrest, Finite Markov Chain Analysis of Genetic Algorithms, Genetic Algorithms and their Aplication: Proceedings of the Second International Conference on Genetic Algorithms, pp. 1–8, 1987.Google Scholar
  7. 7.
    M. Goemans, D. Williamson, 878 approximation algorithms for the max cut and max 2sat, Proceedings of the twenty-sixth annual symposium on the theory of computing, pag. 422, 1994.Google Scholar
  8. 8.
    J. Hertz, A. Krogh, R. J. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, 1991.Google Scholar
  9. 9.
    J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences 79, pp. 2554–2558, 1982.Google Scholar
  10. 10.
    J. H. Holland, Induction, Processes of Inference, Learning and Discovery, MIT Press, Cambridge, 1989.Google Scholar
  11. 11.
    J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, 1992.Google Scholar
  12. 12.
    J. R. Koza, Genetic Programming, MIT Press, Cambridge, 1992.Google Scholar
  13. 13.
    A. E. Nix, M. D. Vose, Modelling Genetic Algorithms with Markov Chains, Annals of Mathematics and Artificial Intelligence, Vol. 5, pp. 79–88, 1992.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. Bertoni
    • 1
  • P. Campadelli
    • 1
  • M. Carpentieri
    • 1
  • G. Grossi
    • 1
  1. 1.Dipartimento di Scienze dell'InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations