Advertisement

Comparison of view-based object recognition algorithms using realistic 3D models

  • V. Blanz
  • B. Schölkopf
  • H. Bülthoff
  • C. Burges
  • V. Vapnik
  • T. Vetter
Oral Presentations: Applications Image Processing Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1112)

Abstract

Two view-based object recognition algorithms are compared: (1) a heuristic algorithm based on oriented filters, and (2) a support vector learning machine trained on low-resolution images of the objects. Classification performance is assessed using a high number of images generated by a computer graphics system under precisely controlled conditions. Training- and test-images show a set of 25 realistic three-dimensional models of chairs from viewing directions spread over the upper half of the viewing sphere. The percentage of correct identification of all 25 objects is measured.

Keywords

Support Vector Machine Structural Risk Minimization Support Vector Learn Machine Handwritten Digit Recognition High Spatial Frequency Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boser, B. E., Guyon, I. M., Vapnik, V.: A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory, Pittsburgh ACM (1992) 144–152.Google Scholar
  2. Bülthoff, H. H., Edelman, S.: Psychological support for a two-dimensional view interpolation theory of object recognition. Proc. Natl. Acad. Sci. USA 89 (1992) 60–64Google Scholar
  3. Cortes, C., Vapnik, V.: Support Vector Networks. Machine Learning 20 (1995) 1–25Google Scholar
  4. Lades, M, Vorbrüggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C, Würtz, R. P., Konen, W. Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Trans. Comp. 42 3 (1993) 300–311Google Scholar
  5. Marr, D., Nishihara, H. K. Representation and recognition of the spatial organization of three dimensional structure. Proceedings of the Royal Society of London B, 200 (1978) 269–294Google Scholar
  6. Poggio, T., Edelman, S. A network that learns to recognize three-dimensional objects. Nature 343 (1990) 263–266Google Scholar
  7. Schölkopf, B., Burges, C., Vapnik, V.: Extracting support data for a given task. In: Fayyad, U. M., Uthurusamy, R. (eds.): Proceedings, First International Conference on Knowledge Discovery & Data Mining, AAAI Press, Menlo Park, CA (1995)Google Scholar
  8. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Verlag, New York (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • V. Blanz
    • 1
    • 2
  • B. Schölkopf
    • 1
    • 2
  • H. Bülthoff
    • 1
  • C. Burges
    • 2
  • V. Vapnik
    • 2
  • T. Vetter
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany
  2. 2.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations