Advertisement

Binary search trees: How low can you go?

  • Rolf Fagerberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1097)

Abstract

We prove that no algorithm for balanced binary search trees performing insertions and deletions in amortized time O(f(n)) can guarantee a height smaller than [log(n + 1) + 1/f(n)] for all n. We improve the existing upper bound to [log(n + 1) + log2 (f(n))/f(n)], thus almost matching our lower bound. We also improve the existing upper bound for worst case algorithms, and give a lower bound for the semi-dynamic case.

Keywords

Left Endpoint Binary Search Tree Empty Slot Optimal Height Amortize Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. M. Adel'son-Vel'skii and E. M. Landis. An Algorithm for the Organisation of Information. Dokl. Akad. Nauk SSSR, 146:263–266, 1962. In Russian. English translation in Soviet Math. Dokl., 3:1259–1263, 1962.Google Scholar
  2. 2.
    A. Andersson. Optimal bounds on the dictionary problem. In Proc. Symp. on Optimal Algorithms, Varna, volume 401 of LNCS, pages 106–114. Springer-Verlag, 1989.Google Scholar
  3. 3.
    A. Andersson. Efficient Search Trees. PhD thesis, Department of Computer Science, Lund University, Sweden, 1990.Google Scholar
  4. 4.
    A. Andersson, C. Icking, R. Klein, and T. Ottmann. Binary search trees of almost optimal height. Acta Informatica, 28:165–178, 1990.Google Scholar
  5. 5.
    A. Andersson and T. W. Lai. Fast updating of well-balanced trees. In SWAT'90, volume 447 of LNCS, pages 111–121. Springer-Verlag, 1990.Google Scholar
  6. 6.
    A. Andersson and T. W. Lai. Comparison-efficient and write-optimal searching and sorting. In ISA'91, volume 557 of LNCS, pages 273–282. Springer-Verlag, 1991.Google Scholar
  7. 7.
    P. F. Dietz and R. Raman. A constant update time finger search tree. Information Processing Letters, 52, 1994.Google Scholar
  8. 8.
    P. F. Dietz, J. I. Seiferas, and J. Zhang. A tight lower bound for on-line monotonie list labeling. In SWAT'94, volume 824 of LNCS, pages 131–142. Springer-Verlag, 1994.Google Scholar
  9. 9.
    P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In 19th STOC, pages 365–372, 1987.Google Scholar
  10. 10.
    P. F. Dietz and J. Zhang. Lower bounds for monotonic list labeling. In SWAT'90, volume 447 of LNCS, pages 173–180. Springer-Verlag, 1990.Google Scholar
  11. 11.
    R. Fleischer. A simple balanced search tree with O(1) worst-case update time. In ISSAC'93, volume 762 of LNCS, pages 139–146. Springer-Verlag, 1993.Google Scholar
  12. 12.
    L. J. Guibas and R. Sedgewick. A Dichromatic Framework for Balanced Trees. In 19th FOCS, pages 8–21, 1978.Google Scholar
  13. 13.
    T. Lai. Efficient Maintenance of Binary Search Trees. PhD thesis, Department of Computer Science, University of Waterloo, Canada, 1990.Google Scholar
  14. 14.
    T. Lai and D. Wood. Updating almost complete trees or one level makes all the difference. In STACS'90, volume 415 of LNCS, pages 188–194. Springer-Verlag, 1990.Google Scholar
  15. 15.
    C. Levcopoulos and M. H. Overmars. A balanced search tree with O(1) worst-case update time. Acta Informatica, 26(3):269, 1988.CrossRefGoogle Scholar
  16. 16.
    H. A. Maurer, T. Ottmann, and H.-W. Six. Implementing dictionaries using binary trees of very small height. Information Processing Letters, 5, 1976.Google Scholar
  17. 17.
    M. H. Overmars. The Design of Dynamic Data Structures. Springer, Berlin, 1983.Google Scholar
  18. 18.
    J. Zhang. Density Control and On-Line Labeling Problems. PhD thesis, Department of Computer Science, University of Rochester, New York, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Rolf Fagerberg
    • 1
  1. 1.Department of Mathematics and Computer ScienceOdense UniversityOdense MDenmark

Personalised recommendations