Formal reasoning about modules, reuse and their correctness

  • Christoph Kreitz
  • Kung -Kiu Lau
  • Mario Ornaghi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1085)


We present a formalisation of modules that are correct, and (correctly) reusable in the sense that composition of modules preserves both correctness and reusability. We also introduce a calculus for formally reasoning about the construction of such modules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bertoni, G. Mauri and P. Miglioli. On the power of model theory in specifying abstract data types and in capturing their recursiveness. Fundamenta Informaticae VI(2):127–170, 1983.Google Scholar
  2. 2.
    A. Brogi, P. Mancarella, D. Pedreschi and F. Turini. Modular logic programming. ACM TOPLAS 16(4):1361–1398, 1994.CrossRefGoogle Scholar
  3. 3.
    K.M. Bruce. A paradigmatic object-oriented programming language: Design, static typing and semantics. J. Functional Programming 4(2):127–206, 1994.Google Scholar
  4. 4.
    M. Bugliesi, E. Lamma and P. Mello. Modularity in logic programming. J. Logic Programming 19, 20:443–502, 1994. Special issue: Ten years of logic programming.CrossRefGoogle Scholar
  5. 5.
    C.C. Chang and H.J. Keisler. Model Theory. North-Holland, 1973.Google Scholar
  6. 6.
    J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification and programming. J. ACM 39(1):95–146, 1992.CrossRefGoogle Scholar
  7. 7.
    K.K. Lau and M. Ornaghi. On specification frameworks and deductive synthesis of logic programs. In L. Fribourg and F. Turini, editors, Proc. LOPSTR 94 and META 94, LNCS 883, pages 104–121, Springer-Verlag, 1994.Google Scholar
  8. 8.
    K.K. Lau, M. Ornaghi and S.-.Å. Tärnlund. The halting problem for deductive synthesis of logic programs. In P. van Hentenryck, editor, Proc. 11it th Int. Conf. on Logic Programming, pages 665–683, MIT Press, 1994.Google Scholar
  9. 9.
    K.K. Lau, M. Ornaghi and S.-.Å. Tärnlund. Steadfast logic programs. SubmittedGoogle Scholar
  10. 10.
    J.W. Lloyd. Foundations of Logic Programming, Springer-Verlag, 1987.Google Scholar
  11. 11.
    B. Meyer. Eiffel the Language. Prentice Hall, 1992.Google Scholar
  12. 12.
    P. Miglioli, U. Moscato and M. Ornaghi. Abstract parametric classes and abstract data types defined by classical and constructive logical methods. J. Symb. Comp. 18:41–81, 1994.CrossRefGoogle Scholar
  13. 13.
    J. Palsberg and M.I. Schwartzbach. Object-Oriented Type Systems. Wiley, 1994Google Scholar
  14. 14.
    M. Wirsing. Algebraic specification. In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 675–788. Elsevier, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Christoph Kreitz
    • 1
  • Kung -Kiu Lau
    • 2
  • Mario Ornaghi
    • 3
  1. 1.Fachgebiet Intellektik, Fachbereich InformatikTechnische Hochschule DarmstadtDarmstadtGermany
  2. 2.Department of Computer ScienceUniversity of ManchesterManchesterUK
  3. 3.Dipartimento di Scienze dell'InformazioneUniversita' degli studi di MilanoMilanoItaly

Personalised recommendations