Advertisement

Data mining and knowledge discovery in business databases

  • Gregory Piatetsky-Shapiro
Invited Talks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1079)

Abstract

The rapid and constant growth of databases in business, government, and science has far outpaced our ability to interpret and make sense of this data avalanche, creating a need for a new generation of tools and techniques for intelligent and automated database analysis. These tools and techniques are the subject of the rapidly emerging field of data mining and knowledge discovery in databases (KDD). This paper surveys the state of the art in this field, with a particular focus on the issues and challenges in applying KDD to business databases.

Keywords

Data Mining Knowledge Discovery Near Neighbor Data Warehousing Multivariate Adaptive Regression Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. 1996. Fast Discovery of Association Rules. in AKDDM, Cambridge, MA: AAAI/MIT Press.Google Scholar
  2. 2.
    Agrawal, R. and Psaila, G. 1995. Active Data Mining, in Proceedings of KDD-95: First International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA: The AAAI Press.Google Scholar
  3. 3.
    Anand, T. and Kahn, G. 1992. SPOTLIGHT: A Data Explanation System. In Proc. Eighth IEEE Conference on Applied AI, 2–8. Washington, D.C.: IEEE Press.Google Scholar
  4. 4.
    Barr, D. and Mani, G. 1994. Using Neural Nets to Manage Investments. AI Expert, 16–21, February.Google Scholar
  5. 5.
    Berry, J. 1994. Database Marketing. Business Week, 56–62, Sep 5.Google Scholar
  6. 6.
    Berndt, D. and Clifford, J. 1996. Finding Patterns in Time Series: A Dynamic Programming Approach. In AKDDM, Cambridge, MA: AAAI/MIT Press.Google Scholar
  7. 7.
    Blanchard, D. 1994. News Watch. AI Expert, 7, December.Google Scholar
  8. 8.
    Brachman, R., and Anand, T. 1996. The Process of Knowledge Discovery in Databases: A Human-Centered Approach, in AKDDM, Cambridge, MA: AAAI/MIT Press.Google Scholar
  9. 9.
    Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. 1984. Classification and Regression Trees. Belmont, CA: Wadsworth.Google Scholar
  10. 10.
    Cheeseman, P. 1990. On Finding the Most Probable Model. In Computational Models of Scientific Discovery and Theory Formation, Shrager, J. and Langley P. (eds). Los Gatos, CA: Morgan Kaufmann, 73–95.Google Scholar
  11. 11.
    Codd, E.F. 1993. Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate. E.F. Codd and Associates.Google Scholar
  12. 12.
    Data Warehousing Conference Proceedings, DCI Consulting, Andover, MA, 1996.Google Scholar
  13. 13.
    Dasarathy, B. V. 1991. Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  14. 14.
    Fayyad, U. M. and Uthurusamy, R. 1994. Editors, Proceedings of KDD-94: the AAAI-94 workshop on Knowledge Discovery in Databases, AAAI Press report WS-03, Menlo Park, CA: The AAAI Press.Google Scholar
  15. 15.
    Fayyad, U. M. and Uthurusamy, R. 1995. Editors, Proceedings of KDD-95: First International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA: The AAAI Press.Google Scholar
  16. 16.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, 1996. R. Editors, Advances in Knowledge Discovery and Data Mining, Cambridge, MA: AAAI/MIT Press.Google Scholar
  17. 17.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. 1996. From Data Mining to Knowledge Discovery: an Overview, in AKDDM, Cambridge, MA: AAAI/MIT Press, 1–29.Google Scholar
  18. 18.
    Friedman, J. H. 1989. Multivariate Adaptive Regression Splines. Annals of Statistics, 19: 1–141.Google Scholar
  19. 19.
    Han, J., Cai, Y. and Cercone, N. 1992. Knowledge Discovery in Databases: An Attribute-Oriented Approach, in Proc. of 1992 Int'l Conf. on Very Large Data Bases (VLDB'92), Vancouver, Canada, pp. 547–559.Google Scholar
  20. 20.
    Haykin, S. 1994. Neural Networks, a Comprehensive Foundation. Macmillan, New York, NY.Google Scholar
  21. 21.
    Heckerman, D. 1996. Bayesian Networks for Knowledge Discovery in AKDDM, Cambridge, MA: AAAI/MIT Press.Google Scholar
  22. 22.
    Jain, A. K. and Dubes, R. C. 1988. Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  23. 23.
    Kohavi, R. 1995, Wrappers for Performance Enhancement and Oblivious Decision Graphs, Ph. D., Stanford University, http://robotics.stanford.edu/ ronnykGoogle Scholar
  24. 24.
    Major, J. and Riedinger, D. 1992. EFD: A Hybrid Knowledge/Statistical-Based System for the Detection of Fraud. Int. J. of Intelligent Systems, 7(7): 687–703.Google Scholar
  25. 25.
    Matheus, C., Piatetsky-Shapiro, G., and McNeill, D. 1996. Selecting and Reporting What is Interesting: The KEFIR Application to Healthcare Data. in AKDDM, Cambridge, MA: AAAI/MIT Press, 495–516.Google Scholar
  26. 26.
    Matheus, C., Chan, P. and Piatetsky-Shapiro, G. 1993. Systems for Knowledge Discovery. IEEE Trans. on Knowledge and Data Engineering, 5(6): 903–913.Google Scholar
  27. 27.
    O'Leary, D. 1995. Some Privacy Issues in Knowledge Discovery: OECD Personal Privacy Guidelines. IEEE Expert, April 1995.Google Scholar
  28. 28.
    Pearl, J. 1992. Probabilistic Reasoning in Intelligent Systems Los Gatos, CA: Morgan Kaufmann.Google Scholar
  29. 29.
    Iatetsky-Shapiro, G. and Frawley, W. 1991. Editors, Knowledge Discovery in Databases, Cambridge, MA: AAAI/MIT Press.Google Scholar
  30. 30.
    Piatetsky-Shapiro, G. 1993. Editor, Proceedings of KDD-93: the AAAI-93 workshop on Knowledge Discovery in Databases. AAAI Press report WS-02, Menlo Park, CA: The AAAI Press.Google Scholar
  31. 31.
    Piatetsky-Shapiro, G., Matheus, C. Smyth, P. and Uthurusamy, R. 1994. KDD-93: Progress and Challenges in Knowledge Discovery in Databases. AI Magazine, 15(3): 77–87.Google Scholar
  32. 32.
    Piatetsky-Shapiro, G. and Matheus, C. 1994. The Interestingness of Deviations, in Proceedings of KDD-94: the AAAI-94 workshop on Knowledge Discovery in Databases. Fayyad, U. M. and Uthurusamy, R., (eds.), AAAI Press report WS-03, 28–44, Menlo Park, CA: The AAAI Press.Google Scholar
  33. 33.
    Piatetsky-Shapiro, G. 1995. Editor, Special issue on Knowledge Discovery in Databases. J. of Intelligent Information Systems, 4:1, January.Google Scholar
  34. 34.
    Piatetsky-Shapiro, G. 1995b. Knowledge Discovery in Personal Data vs. Privacy a Mini-symposium. IEEE Expert, April 1995.Google Scholar
  35. 35.
    Quinlan, J. 1992. C4.5: Programs for Machine Learning. Los Gatos, CA: Morgan Kaufmann.Google Scholar
  36. 36.
    Rosenberg, M. 1992. Protecting Privacy, Inside Risks column. Communications of ACM, 35(4): 164.Google Scholar
  37. 37.
    Senator, T. et al, 1995. The Financial Crimes Enforcement Network AI System (FAIS), AI Magazine, Winter 1995, 21–39.Google Scholar
  38. 38.
    Spirtes, P., Glymour, C., and Scheines, R. 1993. Causation, Prediction, and Search, New York: Springer-Verlag.Google Scholar
  39. 39.
    Way, J. and Smith, E. A. 1991. The Evolution of Synthetic Aperture Radar Systems and their Progression to the EOS SAR. IEEE Trans. on Geoscience and Remote Sensing, 29(6): 962–985.Google Scholar
  40. 40.
    Weigend, A. and Gershenfeld, N. (eds.) 1993. Predicting the Future and Understanding the Past. Redwood City, CA: Addison-Wesley.Google Scholar
  41. 41.
    Ziarko, W. 1994. Rough Sets, Fuzzy Sets and Knowledge Discovery, Berlin: Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Gregory Piatetsky-Shapiro
    • 1
  1. 1.GTE LaboratoriesWalthamUSA

Personalised recommendations