Advertisement

Structuring information in a distributed hypermedia system

  • Célia Ghedini Ralha
Eliciting Knowledge from Textual and Other Sources
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1076)

Abstract

This paper addresses some particular issues pertaining to the problem of automatically structuring informal knowledge available on the Internet through a distributed hypermedia system like the World-Wide Web (WWW). It presents a new approach to the integration of hypertext and hypermedia technology with Knowledge Acquisition (KA) which deals with knowledge before the process of formalization. This approach coordinates aspects of automatic computation of nodes in hyperspace through dynamic linking with intelligent mapping of the domain material by the application of qualitative spatial reasoning. This article reports results of multi-disciplinary research that involves cognitive aspects of human memory recovery and association, automatic linking of knowledge from a wide variety of sources (expressed in multiple formats), and an adequate visual interface to display large maps of supporting material.

Keywords

Knowledge Acquisition Spatial Relation Memory Trace Venn Diagram Informal Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Anderson and F. L. Cleaver. “Venn-Type Diagrams for arguments of n terms”, Journal of Symbolic Logic, vol. 30, number 2, June 1965.Google Scholar
  2. 2.
    D. E. Anderson and R. B. Angell. “Venn diagrams for n classes”, Journal of Symbolic Logic, vol. 31 (Abstracts of Papers), 1966.Google Scholar
  3. 3.
    K. Andrews and M. Pichler. “Hooking up 3-space: three-dimensional models as fully-fledged hypermedia documents”. Proceedings of MHVR'94, Moscow, September 1994.Google Scholar
  4. 4.
    K. Andrews and F. Kappe. “Soaring through hyperspace: a snapshot of Hyper-G and its Harmony client”. Proc. of Eurographics Symposium on Multimedia/Hypermedia in Open Distributed Environments. Graz, Austria, June 1994.Google Scholar
  5. 5.
    K. Andrews, F. Kappe and J. Schipflinger. “Harmony: a tool for navigating through deep hyperspace”. Proc. of ED-MEDIA 94, Vancouver, Canada, June 1994.Google Scholar
  6. 6.
    E. J. Conklin. “Hypertext: an introduction and survey”. IEEE Computer, 20(9), 1987.Google Scholar
  7. 7.
    K. M. Fairchild, S. E. Poltrock, and G. W. Furnas. “SemNet: three-dimensional representations of large knowledge bases”. In R. Guindon, editor, Cognitive Science and its Applications for Human-Computer Interaction, Lawrence Erlbaum, Hillsdale, NJ, pp. 201–233, 1988.Google Scholar
  8. 8.
    B. R. Gaines and M. L. G. Shaw. “Integrated Knowledge Acquisition Architectures”. Journal of Intelligent Information Systems, 1(1):9–34, 1992.Google Scholar
  9. 9.
    K. Hapeshi. “Simulating the Development of the Language Lexicon”. AISB Quarterly, Winter 1994/95 No. 90, 1995.Google Scholar
  10. 10.
    D. L. Hintzman. “MINERVA 2: A simulation model of human memory”. Behaviour Research Methods, Instruments and Computers, 16:96–101, 1984.Google Scholar
  11. 11.
    D. L. Hintzman. “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93:411–28, 1986.Google Scholar
  12. 12.
    W. James. The Principles of Psychology. New York: Holt, 1890.Google Scholar
  13. 13.
    M. R. Kibby and T. Mayes. “Towards Intelligent Hypertext”. In R. McAllese (ed.), Hypertext: Theory into Practice, Intellect Ltd, Oxford, England, pp. 138–144, 1993.Google Scholar
  14. 14.
    T. Kohonen. Content-addressable memories. Springer-Verlag. New York, 1987.Google Scholar
  15. 15.
    F. Lehmann and A. G. Cohn. “The EGG/YOLK Reliability Hierarchy: Data Translation and Model Integration Using Ordered Sorts with Prototypes”. In Proc. 3rd Int. Conf. on Knowledge Management (CIKM94). ACM Press, Gaithersburg, Maryland, 1994.Google Scholar
  16. 16.
    H. Maurer. “Why Hypermedia Systems are Important”. In Proc. 4th Int. Conf. on Computer Assisted Learning. Springer-Verlag, 1992.Google Scholar
  17. 17.
    G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross and K. Miller. Introduction to WordNet: an On-line Lexical Database, (WordNet documentation), 1993.Google Scholar
  18. 18.
    F. L. Neves and J. N. Oliveira. “Classifying Internet Objects”. In Proc. of the WWW National Conference Internet Multimedia Information — IMI'95. Braga, Portugal, July 1995.Google Scholar
  19. 19.
    Hyacinth S. Nwana, R. C. Paton, T. J. M. Bench-Capon, and M. J. R. Shave. “Facilitating the development of knowledge based systems”. The European Journal on Artificial Intelligence, 4(2/3):60–73, 1991.Google Scholar
  20. 20.
    J. N. Oliveira. “Fuzzy Object Comparison and Its Application to a Self-Adaptable Query Mechanism”. Invited Paper, 6th Int. Fuzzy Systems Association World Congress., 1995.Google Scholar
  21. 21.
    Célia G. Ralha. “Towards an Intelligent Hyper-Media Environment for Knowledge Acquisition”. In Proc. 2nd Groningen Int. Information Technology — GRONICS'95 (http://www.cs.rug.nl/∼tino/gronics/CeliaRalha.ps.gz). Groningen, The Netherlands, February 1995.Google Scholar
  22. 22.
    Célia G. Ralha and A. G. Cohn. “Building Maps of Hyperspace”. In Proc. of the WWW National Conference Internet Multimedia Information — IMI'95 (http://www.di. uminho.pt/cdrom/tmp/papers/p5/5.ps). Braga, Portugal., July 1995.Google Scholar
  23. 23.
    Célia G. Ralha. Venn Diagram for ‘n’ classes — Design Report, October 1995. (Not published).Google Scholar
  24. 24.
    D. A. Randell, Z. Cui and A. G. Cohn. “A Spatial Logic based on Regions and Connection”. In Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp. 165–176, 1992.Google Scholar
  25. 25.
    J. A. Rantanen. “Hypermedia in knowledge acquisition and specification of user interface for KBS: an approach and a case study”. Knowledge Acquisition, 2(3):259–278, 1990.Google Scholar
  26. 26.
    G. Schreiber, B. Wielinga, H. Akkermans, W. Van de Velde and A. Anjewierden. “CML: The Common KADS Conceptual Modeling Language”. In Luc Steels, Guus Schreiber and Walter Van de Velde (eds), A Future for Knowledge Acquisition — Proc. of EKAW'94, Springer-Verlag, Belgium, pp. 1–25, 1994.Google Scholar
  27. 27.
    R. Semon. Mnemic Psychology. (B. Duffy, Trans.) London: George Allen & Unwin, 1923. (Original work published 1909).Google Scholar
  28. 28.
    P. Simons. Parts: A Study in Ontology. Clarendon Press, Oxford, 1987.Google Scholar
  29. 29.
    John Venn. Symbolic Logic, London, 1881.Google Scholar
  30. 30.
    W. Zadrozny and M. Kim. “Computational Mereology: A Study of Part-of Relations for Multimedia Indexing”. In C. Eschenbach, Ch. Habel and B. Smith (eds), Topological Foundations of Cognitive Science — Papers from the Workshop at the FISI-CS, NY, July 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Célia Ghedini Ralha
    • 1
  1. 1.Division of Artificial Intelligence School of Computer StudiesUniversity of LeedsLeedsEngland

Personalised recommendations