Third-order matching in the polymorphic lambda calculus

  • Jan Springintveld
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1074)


We show that it is decidable whether a third-order matching problem in the polymorphic lambda calculus has a solution. We give an algorithm that, given such a problem, returns a substitution if it has a solution and fail otherwise.


Type Variable Match Problem Polymorphic Variable Finite Order Object Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bar92]
    H.P. Barendregt. Lambda calculi with types. In: S. Abramsky, D. M. Gabbay, and T.S.E. Maibaum (eds.), Handbook of Logic in Computer Science, volume 2, Oxford University Press, Oxford, 1992, pp. 117–309.Google Scholar
  2. [CH88]
    T. Coquand and G. Huet. The calculus of constructions. Information and Control, 76:95–120, 1988.Google Scholar
  3. [Dow91b]
    G. Dowek. L'indécidabilité du filtrage du troisième ordre dans les calculs avec types dépendants ou constructeurs de types. Compte Rendu à l'Académie des Sciences, 312, Série I:951–956, 1991. With erratum in: ibid., 318, Série I, p. 873, 1994.Google Scholar
  4. [Dow91d]
    G. Dowek. A second-order pattern matching algorithm for the cube of typed λ-calculi. In: A. Tarlecki (ed.), Mathematical Foundations of Computer Science '91, LNCS 520, Springer-Verlag, Berlin, 1991, pp. 151–160.Google Scholar
  5. [Dow93b]
    G. Dowek. The undecidability of pattern matching in calculi where primitive recursive functions are representable. Theoretical Computer Science, 107:349–356, 1993.Google Scholar
  6. [Dow94]
    G. Dowek. Third order matching is decidable. Annals of Pure and Applied Logic, 69:135–155, 1994.Google Scholar
  7. [PH89]
    A.J. Field and P.G. Harrison. Functional Programming. Addison-Wesley, Wokingham, 1989.Google Scholar
  8. [Geu93b]
    H. Geuvers. Logics and Type Systems. PhD thesis, University of Nijmegen, 1993.Google Scholar
  9. [Gir72]
    J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l'arithmétique d'ordre supérieur. PhD thesis, Université Paris VII, 1972.Google Scholar
  10. [Gir89]
    J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer Science, volume 7, Cambridge University Press, 1989.Google Scholar
  11. [Löb76]
    M.H. Löb. Embedding first order predicate logic in fragments of intuitionistic logic. Journal of Symbolic Logic, 41:705–719, 1976.Google Scholar
  12. [Mil92]
    D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14(4):321–359, 1992.Google Scholar
  13. [Pad94a]
    V. Padovani. Fourth order dual interpolation is decidable. Manuscript, Université Paris VII — C.N.R.S, 1994.Google Scholar
  14. [Pad94b]
    V. Padovani. On equivalence classes of interpolation equations. In: M. Dezani-Ciancaglini, G. Plotkin (eds.), Typed Lambda Calculi and Applications, LNCS 902, Springer-Verlag, Berlin, 1995, pp. 335–349.Google Scholar
  15. [Rey74]
    J.C. Reynolds. Towards a theory of type structure. In: B. Robinet (ed.), Proceedings of the Colloque sur la Programmation, LNCS 19, Springer-Verlag, Berlin, 1974, pp. 408–524.Google Scholar
  16. [Spr95a]
    J. Springintveld. Third-order matching in the presence of type constructors. Extended Abstract. In: M. Dezani-Ciancaglini, G. Plotkin (eds.), Typed Lambda Calculi and Applications, LNCS 902, Springer-Verlag, Berlin, 1995, pp. 428–442.Google Scholar
  17. [Spr95b]
    J. Springintveld. Algorithms for Type Theory. PhD Thesis, Utrecht University, Department of Philosophy, May 1995.Google Scholar
  18. [Wol93]
    D.A. Wolfram. The Clausal Theory of Types, Cambridge Tracts in Theoretical Computer Science, volume 21. Cambridge University Press, Cambridge, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jan Springintveld
    • 1
  1. 1.Computing Science Institute Department of Mathematics and Computer ScienceUniversity of NijmegenGL NijmegenThe Netherlands

Personalised recommendations