Concatenation of graphs

  • Joost Engelfriet
  • Jan Joris Vereijken
Graph Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1073)


An operation of concatenation is defined for graphs. Then strings are viewed as expressions denoting graphs, and string languages are interpreted as graph languages. For a class K of string languages, Int(K) is the class of all graph languages that are interpretations of languages from K. For the class REG of regular languages, Int(REG) might be called the class of regular graph languages; it equals the class of graph languages generated by linear Hyperedge Replacement Systems. Two characterizations are given of the largest class K′ such that Int(K′)=Int(K).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BauCou]
    M.Bauderon, B.Courcelle; Graph expressions and graph rewritings, Math. Syst. Theory 20 (1987), 83–127Google Scholar
  2. [Ben]
    D.B.Benson; The basic algebraic structures in categories of derivations, Inf. and Control 28 (1975), 1–29Google Scholar
  3. [Ber]
    J. Berstel; Transductions and Context-Free Languages, Teubner, Stuttgart, 1979Google Scholar
  4. [BosDW]
    F.Bossut, M.Dauchet, B.Warin; A Kleene theorem for a class of planar acyclic graphs, Inf. and Comp. 117 (1995), 251–265Google Scholar
  5. [Cla]
    V.Claus; Ein Vollständigkeitssatz für Programme und Schaltkreise, Acta Informatica 1 (1971), 64–78Google Scholar
  6. [Cou]
    B.Courcelle; Graph rewriting: an algebraic and logic approach, in Handbook of Theoretical Computer Science, Vol.B (J.van Leeuwen, ed.), Elsevier, 1990, pp.193–242Google Scholar
  7. [CouER]
    B.Courcelle, J.Engelfriet, G.Rozenberg; Handle-rewriting hypergraph languages, J. of Comp. Syst. Sci. 46 (1993), 218–270Google Scholar
  8. [Dre]
    F.Drewes; Transducibility — symbolic computation by tree-transductions, University of Bremen, Bericht Nr. 2/93, 1993Google Scholar
  9. [EhrKKK]
    H. Ehrig, K.-D. Kiermeier, H.-J. Kreowski, W. Kühnel; Universal Theory of Automata, Teubner, Stuttgart, 1974Google Scholar
  10. [Eng]
    J.Engelfriet; Graph grammars and tree transducers, Proc. CAAP'94 (S.Tison, ed.), Lecture Notes in Computer Science 787, Springer-Verlag, Berlin, 1994, pp.15–36Google Scholar
  11. [EngHey]
    J.Engelfriet, L.M.Heyker; The string generating power of context-free hypergraph grammars, J. of Comp. Syst. Sci. 43 (1991), 328–360Google Scholar
  12. [EngHL]
    J.Engelfriet, L.M.Heyker, G.Leih; Context-free graph languages of bounded degree are generated by apex graph grammars, Acta Informatica 31 (1994), 341–378Google Scholar
  13. [EngRS]
    J.Engelfriet, G.Rozenberg, G.Slutzki; Tree transducers, L systems, and two-way machines, J. of Comp. Syst. Sci. 20 (1980), 150–202Google Scholar
  14. [EngVer]
    J.Engelfriet, J.J.Vereijken; Context-free graph grammars and concatenation of graphs, Report 95-27, Leiden University, September 1995Google Scholar
  15. [GecSte]
    F.Gécseg, M.Steinby; Tree Automata, Akadémiai Kiadó, Budapest, 1984Google Scholar
  16. [Gre]
    S.Greibach; One-way finite visit automata, Theor. Comput. Sci. 6 (1978), 175–221Google Scholar
  17. [Hab]
    A.Habel; Hyperedge Replacement: Grammars and Languages, Lecture Notes in Computer Science 643, Springer-Verlag, Berlin, 1992Google Scholar
  18. [Hot1]
    G.Hotz; Eine Algebraisierung des Syntheseproblems von Schaltkreisen, EIK 1 (1965), 185–205, 209–231Google Scholar
  19. [Hot2]
    G.Hotz; Eindeutigkeit und Mehrdeutigkeit formaler Sprachen, EIK 2 (1966), 235–246Google Scholar
  20. [HotKM]
    G.Hotz, R.Kolla, P.Molitor; On network algebras and recursive equations, in Graph-Grammars and Their Application to Computer Science (H.Ehrig, M.Nagl, G.Rozenberg, A.Rosenfeld, eds.), Lecture Notes in Computer Science 291, Springer-Verlag, Berlin, 1987, pp.250–261Google Scholar
  21. [Raj]
    V.Rajlich; Absolutely parallel grammars and two-way finite state transducers, J. of Comp. Syst. Sci. 6 (1972), 324–342Google Scholar
  22. [Sal]
    A.Salomaa; Formal Languages, Academic Press, New York, 1973Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • Jan Joris Vereijken
    • 1
  1. 1.Department of Computer ScienceLeiden UniversityRA LeidenThe Netherlands

Personalised recommendations