Advertisement

Sequent calculi for default and autoepistemic logics

  • Piero A. Bonatti
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1071)

Abstract

Two sequent calculi, for default logic and autoepistemic logic, will be introduced in this paper. The main goal is improving our prooftheoretic understanding of non-monotonic formalisms. Credulous reasoning will be axiomatized for the first time, and a link will be established between non-monotonic reasoning and the branch of logic devoted to axiomatic rejection methods. In this way, some aspects of non-monotonic reasoning, which were not explicitly axiomatized in previous approaches, will be completely characterized in proof-theoretic terms.

Keywords

Inference Rule Sequent Calculus Default Theory Default Logic Nonmonotonic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Amati, L. Carlucci Aiello, D. Gabbay, F. Pirri. A proof theoretical approach to default reasoning I: tableaux for default logic. To appear in the Journal of Logic and Computation.Google Scholar
  2. 2.
    C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. Implementing deductive databases by linear programming. In Proc. of ACM-PODS, 1992.Google Scholar
  3. 3.
    C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. Implementing stable semantics by linear programming. In L.M. Pereira, A. Nerode (eds.) Logic Programming and Non-monotonic Reasoning: Proc. of the Second Int. Workshop. MIT Press, Cambridge, Massachussetts, 1993.Google Scholar
  4. 4.
    R.N. Bol, J.F. Groote. The meaning of negative premises in transition system specifications. In Proc. of ICALP 91, LNCS 510, Springer-Verlag, 1991.Google Scholar
  5. 5.
    A. Bochman. On the relation between default and modal consequence relations. In Proc. of KR'94, 63–74, Morgan Kaufmann, 1994.Google Scholar
  6. 6.
    P.A. Bonatti. Three-valued beliefs and provability, and the semantics of logic programs. PhD Thesis TD-15/93, Dipartimento di Informatica, Università di Pisa, 1993.Google Scholar
  7. 7.
    P.A. Bonatti. Autoepistemic logic programming. Journal of Automated Reasoning, 13:35–67, 1994.Google Scholar
  8. 8.
    P.A. Bonatti. A Gentzen system for non-theorems. Technical Report CD-TR 93/52, Christian Doppler Labor für Expertensysteme, Technische Universität, Wien, September 1993.Google Scholar
  9. 9.
    X. Caicedo. A formal system for the non-theorems of the propositional calculus. Notre Dame Journal of Formal Logic, 19:147–151, (1978).Google Scholar
  10. 10.
    R. Dutkiewicz. The method of axiomatic rejection for the intuitionistic propositional calculus. Studia Logica, 48:449–459, (1989).Google Scholar
  11. 11.
    D. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. In K.R. Apt (ed.) Logics and Models of Concurrent Systems. Springer-Verlag, Berlin, 1985.Google Scholar
  12. 12.
    M.L. Ginsberg. A circumscriptive theorem prover. Artificial Intelligence, 39(2):209–230, (1989).Google Scholar
  13. 13.
    J.F. Groote. Transition system specifications with negative premises. In Proc. of Concur 90, LNCS 458, Springer-Verlag, 1990.Google Scholar
  14. 14.
    Y.J. Jiang. A first step towards autoepistemic logic programming. Computers and Artificial Intelligence, 10(5):419–441, (1992).Google Scholar
  15. 15.
    S. Kraus, D. Lehmann and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1):167–207, (1990).Google Scholar
  16. 16.
    H.J. Levesque. All I know: a study in autoepistemic logic. Artificial Intelligence, 42:263–309, (1990).Google Scholar
  17. 17.
    J. Lukasiewicz. Aristotle's syllogistic from the standpoint of modern formal logic. Clarendon Press, Oxford, 1951.Google Scholar
  18. 18.
    J. McCarthy. Circumscription: a form of non-monotonic reasoning. Artificial Intelligence, 13:27–39, (1980).Google Scholar
  19. 19.
    D. Makinson. General theory of cumulative inference. In M. Reinfrank, J. De Kleer, M.L. Ginsberg and E. Sandewall (eds.) Non-monotonic Reasoning, LNAI 346, Springer-Verlag, Berlin, 1989, 1–18.Google Scholar
  20. 20.
    W. Marek, M. Trusczynski. Computing intersections of autoepistemic expansions. In A. Nerode, W. Marek and V.S. Subrahmanian (eds.) Logic Programming and Non-monotonic Reasoning: Proc. of the First Int. Workshop. MIT Press, Cambridge, Massachusetts, 1991.Google Scholar
  21. 21.
    R.C. Moore. Semantical considerations on non-monotonic logic. Artificial Intelligence, 25 (1), (1985).Google Scholar
  22. 22.
    M.A. Nait Abdallah. An extended framework for default reasoning. In Proc. of FCT'89, LNCS 380, 339–348, Springer-Verlag, 1989.Google Scholar
  23. 23.
    I. Niemela. Decision procedures for autoepistemic logic. Proc. CADE-88, LNCS 310, Springer-Verlag, 1988.Google Scholar
  24. 24.
    N. Olivetti. Tableaux and sequent calculus for minimal entailment. Journal of Automated Reasoning, 9:99–139, (1992).Google Scholar
  25. 25.
    R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, (1980).Google Scholar
  26. 26.
    V. Risch, C.B. Schwind. Tableau-based characterization and theorem proving for default logic. Journal of Automated Reasoning, 13:223–242, 1994.Google Scholar
  27. 27.
    D. Scott. Completeness proofs for the intuitionistic sentential calculus. Summaries of Talks Presented at the Summer Institute for Symbolic Logic (Itaha, Cornell University, July 1957), Princeton: Institute for Defense Analyses, Communications Research Division, 1957, 231–242.Google Scholar
  28. 28.
    J. Słupecki, G. Bryll, U. Wybraniec-Skardowska. Theory of rejected propositions. Studia Logica, 29:75–115, (1971).Google Scholar
  29. 29.
    M. Tiomkin. Proving unprovability. In Proc. of LICS'88, 1988.Google Scholar
  30. 30.
    A. Varzi. Complementary sentential logics. Bulletin of the Section of Logic, 19:112–116, (1990).Google Scholar
  31. 31.
    A. Varzi. Complementary logics for classical propositional languages. Kriterion. Zeitschrift für Philosophie, 4:20–24 (1992).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Piero A. Bonatti
    • 1
  1. 1.Dipartimento di InformaticaUniversità di TorinoItaly

Personalised recommendations