Advertisement

Strong normalization for all-style LKtq

Extended abstract
  • Jean-Baptiste Joinet
  • Harold Schellinx
  • Lorenzo Tortora de Falco
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1071)

Abstract

We prove strong normalization of tq-reduction for all standard versions of sequent calculus for classical and intuitionistic (second and first order) logic and give a perspicuous argument for the completeness of the focusing restriction on sequent derivations.

Keywords

Logical Reduction Linear Logic Logical Rule Structural Rule Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andreoli, J. M. (1992). Logic programming with focusing proofs in linear logic. Journal of Logic and Computation, 2(3):297–347.Google Scholar
  2. [2]
    Danos, V., Joinet, J.-B., and Schellinx, H. (1993). The structure of exponentials: uncovering the dynamics of linear logic proofs. In Gottlob, G., Leitsch, A., and Mundici, D., editors, Computational Logic and Proof Theory, pages 159–171. Springer Verlag. Lecture Notes in Computer Science 713.Google Scholar
  3. [3]
    Danos, V., Joinet, J.-B., and Schellinx, H. (1995). A new deconstructive logic: linear logic. Preprint 936, Department of Mathematics, Utrecht University. (To appear in the Journal of Symbolic Logic).Google Scholar
  4. [4]
    Danos, V., Joinet, J.-B., and Schellinx, H. (1995). LKT and LKQ: sequent calculi for second order logic based upon dual linear decompositions of classical implication. In Girard, J.-Y., Lafont, Y., and Regnier, L., editors, Advances in Linear Logic, pages 211–224. Cambridge University Press.Google Scholar
  5. [5]
    Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50:1–102.Google Scholar
  6. [6]
    Girard, J.-Y. (1991). Quantifiers in linear logic II. In Corsi, G. and Sambin, G., editors, Nuovi problemi della logica e delta filosofia delta scienza, Volume II. CLUEB, Bologna(Italy).Google Scholar
  7. [7]
    Joinet, J.-B. (1993). Etude de la normalisation du calcul des séquents classique à travers la logique linéaire. Thèse de Doctorat, Université Paris VII.Google Scholar
  8. [8]
    Parigot, M. (1991). Free Deduction: an analysis of computation in classical logic. In Voronkov, A., editor, Russian Conference on Logic Programming, pages 361–380. Springer Verlag. Lecture Notes in Artificial Intelligence 592.Google Scholar
  9. [9]
    Schellinx, H. (1994). A linear approach to modal proof theory. (To appear in H. Wansing, ed., ‘Proof Theory of Modal Logic'. Studies in Applied Logic, Kluwer Academic Publishers.Google Scholar
  10. [10]
    Schellinx, H. (1994). The Noble Art of Linear Decorating. ILLC Dissertation Series, 1994-1. Institute for Language, Logic and Computation, University of Amsterdam.Google Scholar
  11. [11]
    Tammet, T. (1994). Proof search strategies in linear logic. Journal of Automated Reasoning, 12:273–304.Google Scholar
  12. [12]
    Tortora de Falco, L. (1994). Strong normalization property for heterostyle LKtq and FD. Prépublication 53, Équipe de Logique Mathématique, Université Paris VII.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jean-Baptiste Joinet
    • 1
    • 2
    • 3
  • Harold Schellinx
    • 1
    • 2
  • Lorenzo Tortora de Falco
    • 1
    • 2
  1. 1.Équipe de Logique MathématiqueUniversité Paris VIIFrance
  2. 2.Mathematisch InstituutUniversiteit UtrechtThe Netherlands
  3. 3.Université Paris IPanthéon-Sorbonne

Personalised recommendations