Density functionals: Where do they come from, why do they work?

  • Matthias Ernzerhof
  • John P. Perdew
  • Kieron Burke
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 180)


Gradient-corrected or semi-local functionals (GGA's) have achieved the accuracy required to make density functional theory a useful tool in quantum chemistry. We show that local (LSD) and semi-local functionals work because they usefully model the exchange-correlation hole around an average electron, rather than by yielding accurate results at all electron positions. We discuss the system-averaged hole at small interelectronic separations, where such functionals are extremely accurate, and at large interelectronic separations, where the local approximation is incorrect for finite systems. We argue that the “on-top” hole density provides the missing link between real atoms and molecules and the uniform electron gas. We show how exchange-correlation potentials can be related to energies. We also discuss how the degree of nonlocality, i.e., the error made by LSD, is related to the spatial extent of the hole. Decomposing the energy by coupling-constant and spin, we find that the deeper the on-top hole is, the smaller the error in the local approximation to the energy. We use this insight to demonstrate that Hartree-Fock hybrid functionals do not consistently improve on GGA. A different hybrid invokes wavefunction methods for exchange and parallel-spin correlation, but we show that configuration interaction wavefunction calculations with limited basis sets for the Ne atom make the same relative errors in the antiparallel- and parallel-spin correlation energies, despite the lack of a Coulomb cusp in the parallel-spin correlation hole. Finally, we review a recent reinterpretation of spin density functional theory, which is preferable to the standard interpretation in certain cases of extreme nonlocality.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. 1.
    Jones RO, Gunnarsson O (1989) Rev Mod Phys 61: 689CrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Phys Rev 140: A 1133CrossRefGoogle Scholar
  3. 3.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58: 1200CrossRefGoogle Scholar
  4. 4.
    Perdew JP, Wang Y (1992) Phys Rev B 45: 13244Google Scholar
  5. 5.
    Fulde P (1991) Electron Correlations in Molecules and Solids. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. 6.
    Langreth DC, Mehl MJ (1983) Phys Rev B 28: 1809Google Scholar
  7. 7.
    Perdew JP (1986) Phys Rev B 33: 8822; 34: 7406 (E)Google Scholar
  8. 8.
    Perdew JP, Wang Y (1986) Phys Rev B 33: 8800 (1989); 40: 3399 (E)Google Scholar
  9. 9.
    Becke AD (1988) Phys Rev A 38: 3098Google Scholar
  10. 10.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37: 785Google Scholar
  11. 11.
    Perdew JP (1991) in: Electronic Structure of Solids '91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin)Google Scholar
  12. 12.
    Perdew JP, Burke K, in: Proceedings of the 8th International Congress of Quantum Chemistry, 19–24 June, 1994, Prague, to appear in Int. J. Quantum Chem.Google Scholar
  13. 13.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46: 6671 (1993); 48: 4978 (E)Google Scholar
  14. 14.
    Burke K, Perdew JP, Levy M (1995) in Modern Density Functional Theory: A Tool for Chemistry, edited by J. M. Seminario and P. Politzer (Elsevier, Amsterdam)Google Scholar
  15. 15.
    Hammer B, Jacobsen KW, Nørskov JK (1993) Phys Rev Lett 70: 3971CrossRefGoogle Scholar
  16. 16.
    Stixrude L, Cohen RE, Singh DJ (1994) Phys Rev B 50: 6442Google Scholar
  17. 17.
    Burke K, Perdew JP, Ernzerhof M, Accuracy of density functionals and system-averaged exchange-correlation holes, in preparation for Phys Rev LettGoogle Scholar
  18. 18.
    Burke K, Perdew JP, Ernzerhof M, Why semilocal functionals work: Accuracy of the on-top hole density, in preparation for J Chem PhysGoogle Scholar
  19. 19.
    Ernzerhof M, Burke K, Perdew JP, Long-range asymptotic behavior of ground-state wavefunctions, one-matrices, and pair densities, submitted to J Chem PhysGoogle Scholar
  20. 20.
    Umrigar CJ, Gonze X, in High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, edited by D. A. Browne et al. (World Scientific, Singapore, 1993)Google Scholar
  21. 21.
    Umrigar CJ, Gonze X (1994) Phys Rev A 50: 3827Google Scholar
  22. 22.
    Filippi C, Umrigar CJ, Taut M (1994) J Chem Phys 100: 1290CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Phys Rev Lett 49: 1691CrossRefGoogle Scholar
  24. 24.
    Perdew JP, in: Density Functional Methods in Physics, edited by R. M. Dreizler and J. da Providencia (Plenum, NY, 1985), p. 265Google Scholar
  25. 25.
    Harbola MK, Sahni V (1989) Phys Rev Lett 62: 489CrossRefGoogle Scholar
  26. 26.
    Sahni V, Harbol MK (1990) Int J Quantum Chem S 24: 569CrossRefGoogle Scholar
  27. 27.
    Wang Y, Perdew JP, Chevary JA, MacDonald LD, Vosko SH (1990) Phys Rev A 41: 78Google Scholar
  28. 28.
    Holas A, March NH (1995) Phys Rev A 51: 2040Google Scholar
  29. 29.
    Levy M, March NH, Line-integral formulas for exchange and correlation potentials separately, submitted to Phys. Rev. A.Google Scholar
  30. 30.
    Becke AD (1993) J Chem Phys 98: 1372CrossRefGoogle Scholar
  31. 31.
    Barone V (1994) Chem Phys Lett 226: 392CrossRefGoogle Scholar
  32. 32.
    Kutzelnigg W, Klopper W (1991) J Chem Phys 94: 1985CrossRefGoogle Scholar
  33. 33.
    Termath V, Klopper W, Kutzelnigg W (1991) J Chem Phys 94: 2002CrossRefGoogle Scholar
  34. 34.
    Klopper W, Kutzelnigg W (1991) J Chem Phys 94: 2020CrossRefGoogle Scholar
  35. 35.
    Perdew JP (1993) Int J Quantum Chem S 27: 93CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Savin A, Burke K (1995) Phys Rev A 51: 4531Google Scholar
  37. 37.
    Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules (Oxford, New York)Google Scholar
  38. 38.
    Langreth DC, Perdew JP (1975) Solid State Commun 17: 1425CrossRefGoogle Scholar
  39. 39.
    Levy M, Perdew JP (1985) Phys Rev A 32: 2010Google Scholar
  40. 40.
    Görling A, Ernzerhof M (1995) Phys Rev A 51: 4501Google Scholar
  41. 41.
    Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13: 4274Google Scholar
  42. 42.
    Gunnarsson O, Jonson M, Lundqvist BI (1979) Phys Rev B 20: 3136Google Scholar
  43. 43.
    Burke K, Perdew JP, in: Thirty Years of Density Functional Theory, 13–16 June, 1994, Carcow, to appear in Int J Quantum ChemGoogle Scholar
  44. 44.
    Perdew JP, Wang Y (1992) Phys Rev B 46: 12947Google Scholar
  45. 45.
    Levy M, in: Density Functional Theory, eds. R. Dreizler and E. K. U. Gross, NATO ASI Series (Plenum, New York, 1995)Google Scholar
  46. 46.
    Kimball JC (1973) Phys Rev A 7: 1648Google Scholar
  47. 47.
    Davidson ER (1976) Reduced Density Matrices in Quantum Chemistry (Academic Press, New York)Google Scholar
  48. 48.
    Löwdin PO (1955) Phys Rev 97: 1490CrossRefGoogle Scholar
  49. 49.
    Ziegler T, Rauk A, Baerends EJ (1977) Theoret Chim Acta 43: 261CrossRefGoogle Scholar
  50. 50.
    Harris J (1984) Phys Rev A 29: 1648Google Scholar
  51. 51.
    Burke K, Perdew JP (1995) Mod Phys Lett B 9: 829Google Scholar
  52. 52.
    Burke K, Perdew JP, Langreth DC (1994) Phys Rev Lett 73: 1283CrossRefGoogle Scholar
  53. 53.
    Perdew JP, Burke K, Wang Y, Real space cutoff construction of a generalized gradient approximation: derivation of the PW91 functional, submitted to Phys Rev BGoogle Scholar
  54. 54.
    Perdew JP (1994) Int J Quantum Chem 49: 539CrossRefGoogle Scholar
  55. 55.
    Yasuhara H (1972) Solid State Commun 11: 1481CrossRefGoogle Scholar
  56. 56.
    Taut M (1993) Phys Rev A 48: 3561Google Scholar
  57. 57.
    Perdew JP, Zunger A (1981) Phys Rev B 23: 5048Google Scholar
  58. 58.
    Colle R, Salvetti O (1975) Theoret Chim Acta 37: 329CrossRefGoogle Scholar
  59. 59.
    McWeeny R (1976) in: The New World of Quantum Chemistry: Proceedings of the Second International Congress of Quantum Chemistry, eds. B. Pullman and R. G. Parr (Reidel, Dordrecht)Google Scholar
  60. 60.
    Grossman JC, Mitas L, Raghavachari K (1995) Phys Rev Lett 75: 3870CrossRefGoogle Scholar
  61. 61.
    Buijse MA, Baerends EJ (1995) in: Density Functional Theory of Molecules, Clusters, and Solids, ed. D. E. Ellis (Kluwer Academic Publishers, Amsterdam)Google Scholar
  62. 62.
    Vosko SH, Lagowski JB (1986) in: Density Matrices and Density Functionals, edited by R. M. Erdahl and V. H. Smith Jr (Reidel, Dordrecht)Google Scholar
  63. 63.
    Handy NC, Toser DJ, Laming GJ, Murray CW, Amos RD (1994) Isr J Chem 33: 331Google Scholar
  64. 64.
    Perdew JP (1992) Phys Lett A 165: 79Google Scholar
  65. 65.
    Görling A, Levy M, Perdew JP (1993) Phys Rev B 47: 1167Google Scholar
  66. 66.
    Becke AD (1996) J Chem Phys 104: 1040CrossRefGoogle Scholar
  67. 67.
    Grev RS, Schaefer III HF (1992) J Chem Phys 96: 6854CrossRefGoogle Scholar
  68. 68.
    Fuentealba P, Savin A (1994) Chem Phys Lett 217: 566CrossRefGoogle Scholar
  69. 69.
    Stoll H, Golka E, Preuß H (1980) Theoret Chim Acta 55: 29CrossRefGoogle Scholar
  70. 70.
    Proynov EI, Salahub DR (1994) J Chem Phys 49: 7874 (1994)Google Scholar
  71. 71.
    Møller C, Plessett MS (1934) Phys Rev 46: 618CrossRefGoogle Scholar
  72. 72.
    Eggarter E, Eggarter TP (1978) J Phys B 11: 2069Google Scholar
  73. 73.
    Davidson ER, Hagstrom SA, Chakravorty SJ (1991) Phys Rev A 44: 7071Google Scholar
  74. 74.
    Jankowski K, Malinowski P (1980) Phys Rev A 21: 45Google Scholar
  75. 75.
    Jankowski K, Malinowski P, Polasik M (1979) J Phys B: Atom Molec Phys 12: 3157CrossRefGoogle Scholar
  76. 76.
    Rajagopal AK, Kimball JC, Banerjee M (1978) Phys Rev A 18: 2339Google Scholar
  77. 77.
    Ashcroft NW, Mermin ND (1976) Solid State Physics (Holt, Rinehart, Winston NY), problem 2 of Chapter 2Google Scholar
  78. 78.
    Shepard R, Shavitt I, Pitzer RM, Comeau DC, Pepper M, Lischka H, Szalay PG, Ahlrichs R, Brown FB, Zhoa J-G (1988) Int J Quantum Chem 142: 22Google Scholar
  79. 79.
    Shepard R, Lischka H, Szalay PG, Kovar T, Ernzerhof M (1992) J Chem Phys 96: 2085CrossRefGoogle Scholar
  80. 80.
    MOLCAS version 2, 1991, Andersson K, Flüscher MP, Lindh R, Malmqvist P-Å, Olsen J, Roos BO, Sadlej A, University of Lund, Sweden, and Widmark P-O. IBM SwedenGoogle Scholar
  81. 81.
    Szabo A, Ostlund NS (1982) Modern Quantum Chemistry (MacMillan, New York)Google Scholar
  82. 82.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölnel C (1992) Chem Phys Lett 94: 2978Google Scholar
  83. 83.
    Burke K, Perdew JP, Levy M (1996) Phys Rev A April 1.Google Scholar
  84. 84.
    Perdew JP, Ernzerhof M, Burke K, Savin A, On-top pair-density interpretation of spin-density functional theory, with applications to magnetism to appear in Int. J. Quantum Chem.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Matthias Ernzerhof
    • 1
  • John P. Perdew
    • 1
  • Kieron Burke
    • 1
  1. 1.Department of Physics and Quantum Theory GroupTulane UniversityNew OrleansUSA

Personalised recommendations