On the complexity of random strings

Extended abstract
  • Martin Kummer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)

Abstract

We show that the set R of Kolmogorov random strings is truth-table complete. This improves the previously known Turing completeness of R and shows how the halting problem can be encoded into the distribution of random strings rather than using the time complexity of non-random strings. As an application we obtain that Post's simple set is truth-table complete in every Kolmogorov numbering. We also show that the truth-table completeness of R cannot be generalized to size-complexity with respect to arbitrary acceptable numberings. In addition we note that R is not frequency computable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Beigel, M. Kummer, F. Stephan. Approximable sets. Information and Computation, 120:304–314, 1995.CrossRefGoogle Scholar
  2. 2.
    H. Buhrman, E. Mayordomo. An excursion to the Kolmogorov random strings. In: Proceedings Structure in Complexity Theory, Tenth Annual Conference, pp. 197–203, 1995.Google Scholar
  3. 3.
    H. Buhrman, P. Orponen. Random strings make hard instances. In: Proceedings Structure in Complexity Theory, Ninth Annual Conference, pp. 217–222, 1994.Google Scholar
  4. 4.
    C. Calude. Information and randomness. Springer-Verlag, Berlin, 1994.Google Scholar
  5. 5.
    G. J. Chaitin. On the number of n-bit strings with maximum complexity. Applied Mathematics and Computation, 59:97–100, 1993.Google Scholar
  6. 6.
    G. J. Chaitin, A. Arslanov, C. Calude. Program-size complexity computes the halting problem. Bulletin of the EATCS, 57:198–200, 1995.Google Scholar
  7. 7.
    R. Freivalds, S. Jain. Kolmogorov numberings and minimal identification. In: Proceedings EuroCOLT'95, Lecture Notes in Computer Science, 904:182–195, 1995.Google Scholar
  8. 8.
    C. G. Jockusch, R. I. Soare. Post's problem and his hypersimple set. In: Journal of Symbolic Logic, 38:446–452, 1973.Google Scholar
  9. 9.
    S. Kaufmann, M. Kummer. On a quantitative notion of uniformity. In: Proceedings MFCS'95, Lecture Notes in Computer Science, 969:169–178, 1995.Google Scholar
  10. 10.
    A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems Inform. Transmission, 1:1–7, 1965.Google Scholar
  11. 11.
    M. Kummer, F. Stephan. Recursion theoretic properties of frequency computation and bounded queries. Information and Computation, 120:59–77, 1995.Google Scholar
  12. 12.
    A. H. Lachlan. wtt-complete sets are not necessarily tt-complete. Proc. Amer. Math. Soc., 48:429–434, 1975.Google Scholar
  13. 13.
    M. Li, P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag, New York, 1993.Google Scholar
  14. 14.
    N. Lynch. Approximations to the halting problem. Journal of Computer and System Sciences, 9:143–150, 1974.Google Scholar
  15. 15.
    P. Odifreddi. Classical recursion theory. North-Holland, Amsterdam, 1989.Google Scholar
  16. 16.
    E. L. Post. Recursively enumerable sets of positive integers and their decision problems. Bull. Amer. Math. Soc., 50:284–316, 1944.Google Scholar
  17. 17.
    G. F. Rose. An extended notion of computability. In Abstr. Intern. Congr. for Logic, Meth., and Phil. of Science, Stanford, CA, 1960.Google Scholar
  18. 18.
    C. P. Schnorr. Optimal enumerations and optimal Gödel numberings. Mathematical Systems Theory, 8:182–191, 1974.CrossRefGoogle Scholar
  19. 19.
    R. I. Soare. Recursively enumerable sets and degrees. Springer-Verlag, Berlin, 1987.Google Scholar
  20. 20.
    P. Vitányi. E-mail to the author. September 15, 1995.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Martin Kummer
    • 1
  1. 1.Institut für Logik, Komplexität und DeduktionssystemeUniversität KarlsruheKarlsruheGermany

Personalised recommendations