Embedding graphs with bounded treewidth into optimal hypercubes

  • Volker Heun
  • Ernst W. Mayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)

Abstract

In this paper, we present a one-to-one embedding of a graph with bounded treewidth into its optimal hypercube. This is the first time that embeddings of graphs with a very irregular structure into hypercubes are investigated. The dilation of the presented embedding is bounded by 3 ⌈log((d+1) (t+1))⌉+8, where t denotes the treewidth of the graph and d denotes the maximal degree of a vertex in the graph. Moreover, if the graph has constant treewidth or is represented by a tree-decomposition of width t, this embedding can be efficiently implemented on the optimal hypercube itself.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Alon, D. West: The Borsuk-Ulam Theorem and Bisection of Necklaces, Proc. of the Amer. Math. Soc., Vol. 98 (1986), No. 4, 623–628.Google Scholar
  2. 2.
    S. Arnborg, D. Corneil, A. Proskurowski: Complexity of Finding Embeddings in a k-tree, SIAM J. Alg. Disc. Meth., Vol. 8 (1987), No. 2, 277–284.Google Scholar
  3. 3.
    S. Bhatt, F. Chung, T. Leighton, A. Rosenberg: Efficient Embeddings of Trees in Hypercubes, SIAM J. Comput., Vol. 21 (1992), No. 1, 151–162.CrossRefGoogle Scholar
  4. 4.
    H. Bodlaender, T. Hagerup: Parallel Algorithms with Optimal Speedup for Bounded Treewidth, Utrecht University, Technical Report UU-CS-1995-25, 1995.Google Scholar
  5. 5.
    M.Y. Chan: Embedding of d-Dimensional Grids into Optimal Hypercubes, Proceedings of the 1989 ACM Symposium on Parallel Algorithms and Architectures, 52–57.Google Scholar
  6. 6.
    M.Y. Chan: Embedding of Grids into Optimal Hypercubes, SIAM J. Comput., Vol. 20 (1991), No. 5, 834–864.CrossRefGoogle Scholar
  7. 7.
    M.Y. Chan, F. Chin, C.N. Chu, W.K. Mak: Dilation-5 Embedding of 3-Dimensional Grids into Hypercubes Proceedings of the 5th IEEE Symposium on Parallel and Distributed Processing 1993, 285–289.Google Scholar
  8. 8.
    R. Cypher, G. Plaxton: Deterministic Sorting in Nearly Logarithmic Time on the Hypercube and Related Computers, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing 1990, 193–203.Google Scholar
  9. 9.
    K. Efe: Embedding Mesh of Trees in the Hypercube, J. Parallel and Ditsrib. Comput., Vol. 11 (1991), 222–230.Google Scholar
  10. 10.
    T. Feder, E. Mayr: An Efficient Algorithm for Embedding Complete Binary Trees in the Hypercube, Stanford University, 1987.Google Scholar
  11. 11.
    C. Goldberg, D. West: Bisection of Circle Colorings, SIAM J. Alg. Disc. Meth., 6 (1985), 93–106.Google Scholar
  12. 12.
    I. Havel: On Hamiltonian Circuits and Spanning Trees of Hypercubes, Časopis. Pěst. Mat., Vol. 109 (1984), 145–152 [in Czech.].Google Scholar
  13. 13.
    I. Havel, P. Liebl: Embedding the Polytomic Tree into the n-Cube, Časopis. Pěst. Mat., Vol. 98 (1973), 307–314.Google Scholar
  14. 14.
    V. Heun, E.W. Mayr: A New Efficient Algorithm for Embedding an Arbitrary Binary Tree into Its Optimal Hypercube, Technical Report, TUM-I9321, Technische Universität München, 1993 (to appear in J. Algorithms).Google Scholar
  15. 15.
    T. Kloks: Treewidth: Computations and Approximations, Lecture Notes in Computer Science, Vol. 842, Springer-Verlag, 1994.Google Scholar
  16. 16.
    T. Leighton, M. Newman, A. Ranade, W. Schwabe: Dynamic Tree Embeddings in Butterflies and Hypercubes, SIAM J. Comput., Vol. 21 (1992), No. 4, 639–654.CrossRefGoogle Scholar
  17. 17.
    B. Monien, H. Sudborough: Simulating Binary Trees on Hypercubes, VLSI Algorithms and Architectures, Proceedings of the 3rd Aegean Workshop on Computing 1988, Lecture Notes in Computer Science, Vol. 319, Springer-Verlag, 170–180.Google Scholar
  18. 18.
    D. Nassimi, S. Sahni: Parallel Permutation and Sorting Algorithms and a New Generalized Connection Network, J. ACM, Vol. 29 (1982), No. 3, 642–667.CrossRefGoogle Scholar
  19. 19.
    Y. Saad, M. Schulz: Topological Properties of the Hypercube, Yale University Research Report, RR-389, 1985.Google Scholar
  20. 20.
    X. Sheen, Q. Hu, W. Liang: Embedding k-ary Complete Trees into Hypercubes, J. Parallel Distrib. Comput., Vol. 24 (1995), 100–106.CrossRefGoogle Scholar
  21. 21.
    Q. Stout: Hypercubes and Pyramids, Proceedings of the NATO Advanced Research Workshop on Pyramidal Systems for Computer Vision 1986, Springer-verlag, Series F: Computers and System Science, 75–89.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Volker Heun
    • 1
  • Ernst W. Mayr
    • 1
  1. 1.Institut für Informatik der TechnischenUniversität MünchenMünchenGermany

Personalised recommendations