New trends in quantum computing

  • Gilles Brassard
Invited Lecture
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)

Abstract

Classical and quantum information are very different. Together they can perform feats that neither could achieve alone, such as quantum computing, quantum cryptography and quantum teleportation. Some of the applications range from helping to preventing spies from reading private communications. Among the tools that will facilitate their implementation, we note quantum purification and quantum error correction. Although some of these ideas are still beyond the grasp of current technology, quantum cryptography has been implemented and the prospects are encouraging for small-scale prototypes of quantum computation devices before the end of the millennium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Barenco, “A universal two-bit gate for quantum computation”, Proceedings of the Royal Society, London, Series A, Vol. 449, 1995, pp. 679–683.Google Scholar
  2. 2.
    A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. W. Shor, T. Sleator, J. A. Smolin and H. Weinfurter, “Elementary gates for quantum computation”, Physical Review A, Vol. 52, 1995, pp. 3457–3467.PubMedGoogle Scholar
  3. 3.
    A. Barenco, D. Deutsch, A. Ekert and R. Jozsa, “Conditional quantum dynamics and logic gates”, Physical Review Letters, Vol. 74, 15 May 1995, pp. 4083–4086.PubMedGoogle Scholar
  4. 4.
    C. H. Bennett, “Quantum information and computation”, Physics Today, October 1995, pp. 24–30.Google Scholar
  5. 5.
    C. H. Bennett, H. Bernstein, S. Popescu and B. Schumacher, “Concentrating partial entanglement by local operations”, Physical Review A, in press.Google Scholar
  6. 6.
    C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels”, Physical Review Letters, in press.Google Scholar
  7. 7.
    C. H. Bennett and D. P. DiVincenzo, “Quantum computing: Towards an engineering era?”, Nature, Vol. 377, 5 October 1995, pp. 389–390.CrossRefGoogle Scholar
  8. 8.
    C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Wootters, “Mixed state entanglement and quantum error correcting codes”, manuscript, 1995.Google Scholar
  9. 9.
    A. Berthiaume, “L'ordinateur quantique: Complexité et stabilisation des calculs”, PhD Thesis, Université de Montréal, 1995.Google Scholar
  10. 10.
    A. Berthiaume, “Quantum computation”, in Complexity Theory Retrospective II, L. A. Hemaspaandra and A. Selman, editors, Springer-Verlag, Berlin, in press.Google Scholar
  11. 11.
    D. Boneh and R. J. Lipton, “Quantum cryptanalysis of hidden linear functions”, Advances in Cryptology—Crypto'95 Proceedings, Lecture Notes in Computer Science, Vol. 963, Springer-Verlag, Berlin, 1995, pp. 242–437.Google Scholar
  12. 12.
    G. Brassard, “A quantum jump in computer science”, in Computer Science Today, J. van Leeuwen, editor, Lecture Notes in Computer Science, Vol. 1000 (special anniversary volume), Springer-Verlag, Berlin, 1995, pp. 1–14.Google Scholar
  13. 13.
    A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist”, manuscript, September 1995.Google Scholar
  14. 14.
    H. F. Chau and F. Wilczek, “Simple realization of the Fredkin gate using a series of two-body operators”, Physical Review Letters, in press.Google Scholar
  15. 15.
    I. L. Chuang and R. Laflamme, “Quantum error correction by coding”, manuscript, September 1995.Google Scholar
  16. 16.
    I. L. Chuang, R. Laflamme, P. W. Shor and W. Zurek, “Quantum computers, factoring, and decoherence”, manuscript, March 1995.Google Scholar
  17. 17.
    I. L. Chuang and Y. Yamamoto, “A simple quantum computer”, manuscript, May 1995.Google Scholar
  18. 18.
    J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions”, Physical Review Letters, Vol. 74, 15 May 1995, pp. 4091–4094.PubMedGoogle Scholar
  19. 19.
    D. Deutsch, A. Barenco and A. Ekert, “Universality in quantum computation”, Proceedings of the Royal Society, London, Series A, Vol. 449, 1995, pp. 669–677.Google Scholar
  20. 20.
    D. P. DiVincenzo, “Two-bit gates are universal for quantum computation”, Physical Review A, Vol. 51, February 1995, pp. 1015–1022.PubMedGoogle Scholar
  21. 21.
    D. P. DiVincenzo, “Quantum computation”, Science, Vol. 270, 13 October 1995, pp. 255–261.Google Scholar
  22. 22.
    P. Domokos, J.-M. Raimond, M. Brune and S. Haroche, “Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances”, Physical Review A, November 1995, pp. 3554–3559.Google Scholar
  23. 23.
    T. Folger, “The best computer in all possible worlds”, Discover, October 1995, pp. 90–99.Google Scholar
  24. 24.
    A. Yu. Kitaev, “Quantum measurements and the Abelian Stabilizer Problem”, manuscript, November 1995.Google Scholar
  25. 25.
    R. Landauer, “Is quantum mechanically coherent computation useful?”, in Proceedings of the Drexel-4 Symposium on Quantum Nonintegrability—Quantum Classical Correspondence, D. H. Feng and B.-L. Hu, editors, International Press, 1995.Google Scholar
  26. 26.
    S. Lloyd, “Almost any quantum logic gate is universal”, Physical Review Letters, Vol. 75, 10 July 1995, pp. 346–349.PubMedGoogle Scholar
  27. 27.
    S. Lloyd, “Quantum-mechanical computers”, Scientific American, October 1995, pp. 44–50.Google Scholar
  28. 28.
    C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano and D. J. Wineland, “Demonstration of a fundamental quantum logic gate”, Physical Review Letters, Vol. 75, 1995, pp. 4714–4717.PubMedGoogle Scholar
  29. 29.
    A. Muller, H. Zbinden and N. Gisin, “Underwater quantum coding”, Nature, Vol. 378, 30 November 1995, page 449.CrossRefGoogle Scholar
  30. 30.
    M. B. Plenio and P. L. Knight, “Realistic lower bounds for the factorization time of large numbers on a quantum computer”, submitted to Physical Review A, November 1995.Google Scholar
  31. 31.
    P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”, Physical Review A, Vol. 52, October 1995, pp. 2493–2496.CrossRefGoogle Scholar
  32. 32.
    P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, manuscript, August 1995.Google Scholar
  33. 33.
    T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates”, Physical Review Letters, Vol. 74, 15 May 1995, pp. 4087–4090.PubMedGoogle Scholar
  34. 34.
    J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate”, Physical Review A, in press.Google Scholar
  35. 35.
    A. Steane, “Multiple particle interference and quantum error correction”, submitted to Proceedings of the Royal Society, London, Series A, 1995.Google Scholar
  36. 36.
    Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic”, manuscript, June 1995.Google Scholar
  37. 37.
    W. G. Unruh, “Maintaining coherence in quantum computers”, Physical Review A, Vol. 51, February 1995, pp. 992–997.PubMedGoogle Scholar
  38. 38.
    V. Vedral, A. Barenco and A. Ekert, “Quantum networks for elementary arithmetic operations”, submitted to Physical Review A, 1995.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Gilles Brassard
    • 1
  1. 1.Département d'informatique et de recherche opérationnelleUniversité de MontréalMontréalCanada

Personalised recommendations