Advertisement

Decidability results in automata and process theory

  • Yoram Hirshfeld
  • Faron Moller
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1043)

Keywords

Polynomial Time Production Rule Arithmetic Progression Process Algebra Prime Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Aczel. Non-well-founded Sets. CSLI Lecture Notes 14, Stanford University, 1988.Google Scholar
  2. [2]
    J.C.M. Baeten, J.A. Bergstra and J.W. Klop. Decidability of bisimulation equivalence for processes generating context-free languages. Journal of the ACM 40, pp653–682, 1993.CrossRefGoogle Scholar
  3. [3]
    Y. Bar-Hillel, M. Perles and E. Shamir. On formal properties of simple phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikationsforschung 14, pp143–177, 1961.Google Scholar
  4. [4]
    J.A. Bergstra and J.W. Klop. Algebra of Communicating Processes with Abstraction. Theoretical Computer Science 37, pp77–121, 1985.CrossRefGoogle Scholar
  5. [5]
    G. Boudol. Notes on algebraic calculi of processes. In K. Apt (ed), Logics and Models of Concurrent Systems, NATO ASI Series f13, 1985.Google Scholar
  6. [6]
    J.C. Bradfield. Verifying Temporal Properties of Systems. Birkhäuser, 1991.Google Scholar
  7. [7]
    E. Brinksma. Information Processing Systems — Open Systems Interconnection — LOTOS — A formal description technique based upon the temporal ordering of observable behaviour. Draft International Standard ISO8807, 1988.Google Scholar
  8. [8]
    S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A theory of Communicating Sequential Processes. Journal of the ACM 31, pp560–599, 1984.CrossRefGoogle Scholar
  9. [9]
    O. Burkart and B. Steffen. Model checking for context-free processes. In Proceedings of CONCUR 92, W.R. Cleaveland (ed), Lecture Notes in Computer Science 630, pp123–137. Springer-Verlag, 1992.Google Scholar
  10. [10]
    D. Caucal. Graphes canoniques des graphes algébriques. Informatique Théorique et Applications (RAIRO) 24(4), pp339–352, 1990.Google Scholar
  11. [11]
    D. Caucal. A fast algorithm to decide on the equivalence of stateless DPDA. Informatique Théorique et Applications (RAIRO) 27(1), pp23–48, 1993.Google Scholar
  12. [12]
    S. Christensen. Decidability and Decomposition in Process Algebras. Ph.D. Thesis ECS-LFCS-93-278, Department of Computer Science, University of Edinburgh, 1993.Google Scholar
  13. [13]
    S. Christensen. Distributed bisimilarity is decidable for a class of infinitestate processes. In Proceedings of CONCUR 92, W.R. Cleaveland (ed), Lecture Notes in Computer Science 630, pp148–161. Springer-Verlag, 1992.Google Scholar
  14. [14]
    S. Christensen, Y. Hirshfeld and F. Moller. Decomposability, decidability and axiomatisability for bisimulation equivalence on basic parallel processes. In Proceedings of LICS93. IEEE Computer Society Press, 1993.Google Scholar
  15. [15]
    S. Christensen, Y. Hirshfeld and F. Moller. Bisimulation equivalence is decidable for basic parallel processes. In Proceedings of CONCUR93, E. Best (ed), Lecture Notes in Computer Science 715, pp143–157, Springer-Verlag, 1993.Google Scholar
  16. [16]
    S. Christensen, Y. Hirshfeld and F. Moller. Decidable subsets of CCS. The Computer Journal 37(4), pp233–242, 1994.CrossRefGoogle Scholar
  17. [17]
    S. Christensen and H. Hüttel. Decidability issues for infinite-state processes — a survey. Bulletin of the EATCS 51, pp156–166, October 1993.Google Scholar
  18. [18]
    S. Christensen, H. Hüttel and C. Stirling. Bisimulation equivalence is decidable for all context-free processes. In Proceedings of CONCUR 92, W.R. Cleaveland (ed), Lecture Notes in Computer Science 630, pp138–147. Springer-Verlag, 1992.Google Scholar
  19. [19]
    J. Esparza and M. Nielsen. Decidability issues for Petri nets — a survey. Bulletin of the EATCS 52, pp245–262, February 1994.Google Scholar
  20. [20]
    E.P. Friedman. The inclusion problem for simple languages. Theoretical Computer Science 1, pp297–316, 1976.CrossRefGoogle Scholar
  21. [21]
    R.J. van Glabbeek. The linear time-branching time spectrum. In Proceedings of CONCUR 90, J. Baeten, J.W. Klop (eds), Lecture Notes in Computer Science 458, pp278–297. Springer-Verlag, 1990.Google Scholar
  22. [22]
    J.F. Groote. A short proof of the decidability of bisimulation for normed BPA processes. Information Processing Letters 42, pp167–171, 1991.CrossRefGoogle Scholar
  23. [23]
    J.F. Groote and H. Hüttel. Undecidable equivalences for basic process algebra. Information and Computation, 1994.Google Scholar
  24. [24]
    J.F. Groote and F. Moller. Verification of parallel systems via decomposition. In Proceedings of CONCUR 92, W.R. Cleaveland (ed), Lecture Notes in Computer Science 630, pp62–76. Springer-Verlag, 1992.Google Scholar
  25. [25]
    Y. Hirshfeld. Petri Nets and the Equivalence Problem. In Proceedings of CSL'93, K. Meinke (ed), Lecture Notes in Computer Science Springer-Verlag, 1994.Google Scholar
  26. [26]
    Y. Hirshfeld. Deciding equivalences in simple process algebras. In Proceedings of a 3-day Workshop on Bisimulation, Amsterdam, April, 1994.Google Scholar
  27. [27]
    Y. Hirshfeld, M. Jerrum and F. Moller, A polynomial algorithm for deciding bisimilarity of normed context-free processes. Submitted to Theoretical Computer Science, 1994.Google Scholar
  28. [28]
    Y. Hirshfeld, M. Jerrum and F. Moller, A polynomial algorithm for deciding bisimulation equivalence of normed basic parallel processes. Submitted to Mathematical Structures in Computer Science, 1994.Google Scholar
  29. [29]
    Y. Hirshfeld and F. Moller. A fast algorithm for deciding bisimilarity of normed context-free processes. In Proceedings of CONCUR'94, J. Parrow (ed), Lecture Notes in Computer Science. Springer-Verlag, 1994.Google Scholar
  30. [30]
    M. Hennessy. Algebraic Theory of Processes. MIT Press, 1989.Google Scholar
  31. [31]
    C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM 21, pp666–677, 1978.CrossRefGoogle Scholar
  32. [32]
    C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1988.Google Scholar
  33. [33]
    J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison Wesley, 1979.Google Scholar
  34. [34]
    H. Hüttel. Decidability, Behavioural Equivalences and Infinite Transition Graphs. Ph.D. Thesis ECS-LFCS-91-191, Department of Computer Science, University of Edinburgh, 1991.Google Scholar
  35. [35]
    H. Hüttel. Undecidable equivalences for basic parallel processes. In Proceedings of FSTTCS'93, 1993.Google Scholar
  36. [36]
    H. Hüttel and C. Stirling. Actions speak louder than words: proving bisimilarity for context-free processes. In Proceedings of LICS'91, IEEE Computer Society Press, pp376–386, 1991.Google Scholar
  37. [37]
    D.T. Huynh and L. Tian. On deciding readiness and failure equivalences for processes. Technical report UTDCS-31-90, Department of Computer Science, University of Texas at Dallas, September 1990.Google Scholar
  38. [38]
    D.T. Huynh and L. Tian. Deciding bisimilarity of normed context-free processes is in ∑2P. Theoretical Computer Science 123, pp183–197, 1994.CrossRefGoogle Scholar
  39. [39]
    D.T. Huynh and L. Tian. On deciding some equivalences for concurrent processes. Informatique Théorique et Applications (RAIRO) 28(1), pp51–71, 1994.Google Scholar
  40. [40]
    P. Jančar. Decidability questions for bisimilarity of Petri nets and some related problems. In Proceedings of STACS'94, P. Enjalbert, E.W. Mayr and K.W. Wagner (eds), Lecture Notes in Computer Science 775, pp581–592, Springer-Verlag, 1994.Google Scholar
  41. [41]
    P.C. Kanellakis and S.A. Smolka. CCS expressions, finite-state processes and three problems of equivalence. Information and Computation (86), pp43–68, 1990.CrossRefGoogle Scholar
  42. [42]
    S.C. Kleene. Representation of events in nerve nets and finite automata. In Automata Studies, pp3–42, Princeton University Press, Princeton, 1956Google Scholar
  43. [43]
    D.E. Knuth, J.H. Morris, and V.R. Pratt, Fast pattern matching in strings, SIAM Journal on Computing 6, pp323–350, 1977.CrossRefGoogle Scholar
  44. [44]
    A. Korenjak and J. Hopcroft. Simple deterministic languages. In Proceedings of 7th IEEE Switching and Automata Theory conference. pp36–46, 1966.Google Scholar
  45. [45]
    W.S. McCullock and W. Pitts A logical calculus of the ideas immanent in nervous activity. Bull Math Biophysics 5, pp115–133, 1943.Google Scholar
  46. [46]
    R. Milner. Processes: a mathematical model of computing agents. In Proceedings of Logic Colloquium'73, Rose and Shepherdson (eds), pp157–174, North Holland, 1973.Google Scholar
  47. [47]
    R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science 92, Springer-Verlag, 1980.Google Scholar
  48. [48]
    R. Milner. Communication and Concurrency. Prentice-Hall, 1989.Google Scholar
  49. [49]
    R. Milner and F. Moller. Unique decomposition of processes. Theoretical Computer Science 107, pp357–363, 1993.Google Scholar
  50. [50]
    E.F. Moore. Gedanken experiments on sequential machines. In Automata Studies, pp129–153, Princeton University Press, Princeton, 1956Google Scholar
  51. [51]
    D. Muller and P. Schupp. The theory of ends, pushdown automata and second order logic. Theoretical Computer Science 37, pp51–75, 1985.Google Scholar
  52. [52]
    R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing 16, pp937–989, 1987.CrossRefGoogle Scholar
  53. [53]
    D.M.R. Park. Concurrency and Automata on Infinite Sequences. Lecture Notes in Computer Science 104, pp168–183, Springer Verlag, 1981.Google Scholar
  54. [54]
    W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1985.Google Scholar
  55. [55]
    L.J. Stockmeyer. The polynomial time hierarchy. Theoretical Computer Science 3, pp1–22, 1977.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Yoram Hirshfeld
    • 1
  • Faron Moller
    • 2
  1. 1.School of Mathematical SciencesTel Aviv UniversityRamat-AvivIsrael
  2. 2.Department of TeleinformaticsKungl Tekniska HögskolanKistaSweden

Personalised recommendations