ScaLAPACK: A portable linear algebra library for distributed memory computers — Design issues and performance
Abstract
This paper outlines the content and performance of ScaLA-PACK, a collection of mathematical software for linear algebra computations on distributed memory computers. The importance of developing standards for computational and message passing interfaces is discussed. We present the different components and building blocks of ScaLAPACK. This paper outlines the difficulties inherent in producing correct codes for networks of heterogeneous processors. Finally, this paper briefly describes future directions for the ScaLAPACK library and concludes by suggesting alternative approaches to mathematical libraries, explaining how ScaLAPACK could be integrated into efficient and user-friendly distributed systems.
Keywords
Linear Algebra Block Size Message Passing Mathematical Software Float Point OperationPreview
Unable to display preview. Download preview PDF.
References
- 1.E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. “LAPACK Users' Guide”. SIAM, Philadelphia, PA, 1992.Google Scholar
- 2.E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. “LAPACK Users' Guide, Second Edition”. SIAM, Philadelphia, PA, 1995.Google Scholar
- 3.J. Choi, J. Dongarra, and D. Walker. “Parallel Matrix Transpose Algorithms on Distributed Concurrent Computers”. Technical Report UT CS-93-215, LAPACK Working Note #65, University of Tennessee, 1993.Google Scholar
- 4.J. Demmel and K. Stanley. “The Performance of Finding Eigenvalues and Eigenvectors of Dense Symmetric Matrices on Distributed Memory Computers”. In Proceedings of the Seventh SIAM Conference on Parallel Proceesing for Scientific Computing. SIAM, 1994.Google Scholar
- 5.J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. “A Set of Level 3 Basic Linear Algebra Subprograms”. ACM Transactions on Mathematical Software, 16(1):1–17, 1990.CrossRefGoogle Scholar
- 6.J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. “Algorithm 656: An extended Set of Basic Linear Algebra Subprograms: Model Implementation and Test Programs”. ACM Transactions on Mathematical Software, 14 (1):18–32, 1988.Google Scholar
- 7.J. Dongarra and R. van de Geijn. “Two dimensional Basic Linear Algebra Communication Subprograms”. Technical Report UT CS-91-138, LAPACK Working Note #37, University of Tennessee, 1991.Google Scholar
- 8.J. Dongarra, R. van de Geijn, and D. Walker. “A Look at Scalable Dense Linear Algebra Librairies”. Technical Report UT CS-92-155, LAPACK Working Note #43, University of Tennessee, 1992.Google Scholar
- 9.J. Dongarra and R. C. Whaley. “A User's Guide to the BLACS v1.0”. Technical Report UT CS-95-281, LAPACK Working Note #94, University of Tennessee, 1995.Google Scholar
- 10.Message Passing Interface Forum. “MPI: A Message-Passing Interface standard”. International Journal of Supercomputer Applications, 8(3/4), 1994.Google Scholar
- 11.G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. “Solving Problems on Concurrent Processors”, volume 1. Prentice Hall, Englewood Cliffs, N.J, 1988.Google Scholar
- 12.R. Hanson, F. Krogh, and C. Lawson. “A Proposal for Standard Linear Algebra Subprograms”. ACM SIGNUM Newsl, 8(16), 1973.Google Scholar
- 13.W. Hsu, G. Thanh Nguyen, and X. Jiang. “Going Beyond Binary”. http://www.cs.berkeley.edu/ xjiang/cs258/project_1.html, 1995. CS 258 Class project.Google Scholar
- 14.C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. “Basic Linear Algebra Subprograms for Fortran Usage”. ACM Transactions on Mathematical Software, 5(3):308–323, 1979.CrossRefGoogle Scholar