Planarization of graphs embedded on surfaces

  • Hristo N. Djidjev
  • Shankar M. Venkatesan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1017)

Abstract

A planarizing set of a graph is a set of edges or vertices whose removal leaves a planar graph. It is shown that, if G is an n-vertex graph of maximum degree d and orientable genus g, then there exists a planarizing set of O(√dgn) edges. This result is tight within a constant factor. Similar results are obtained for planarizing vertex sets and for graphs embedded on nonorientable surfaces. Planarizing edge and vertex sets can be found in O(n+g) time, if an embedding of G on a surface of genus g is given. We also construct an approximation algorithm that finds an O(√gn log g) planarizing vertex set of G in O(n log g) time if no genus-g embedding is given as an input.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Battle, F. Harary, Y. Kodama, and J.W.T. Youngs, Additivity of the Genus of a Graph, Bulletin Amer. Math. Soc. 68 (1962), 565–568.Google Scholar
  2. 2.
    J. Cai, X. Han, and R.E. Tarjan, An O(m log n)-Time Algorithm for the Maximal Planar Subgraph, SIAM Journal on Computing, 22 (1993), 1142–1162.CrossRefGoogle Scholar
  3. 3.
    T. Chiba, I. Nishioka, and I. Shirakawa, An Algorithm of Maximal Planarization of Graphs, Proc. IEEE Int. Symp. on Circuits and Systems, 1978, 649–652.Google Scholar
  4. 4.
    K. Diks, H. N. Djidjev, O. Sykora, I. Vrto, Edge Separators for Planar Graphs and Their Applications, Journal of Algorithms, vol. 14, (1993), 258–279.Google Scholar
  5. 5.
    H. N. Djidjev, On Some Properties of Nonplanar Graphs, Compt. rend. Acad. bulg. Sci., vol. 37 (1984), 9, 1183–1185.Google Scholar
  6. 6.
    H.N. Djidjev, Genus Reduction in Nonplanar Graphs, manuscript.Google Scholar
  7. 7.
    H.N. Djidjev, A Separator Theorem for Graphs of Fixed Genus, SERDICA Bulgaricae Mathematicae Publicationes 11 (1985), 319–329.Google Scholar
  8. 8.
    H.N. Djidjev, A Linear Algorithm for Partitioning Graphs of Fixed Genus, SERDICA Bulgaricae Mathematicae Publicationes 11 (1985), 369–387.Google Scholar
  9. 9.
    H. N. Djidjev, A Linear Algorithm for the Maximal Planar Subgraph Problem, Technical Report TR95-247, Department of Computer Science, Rice University, 1995.Google Scholar
  10. 10.
    H.N. Djidjev, J. Reif, An Efficient Algorithm for the Genus Problem with Explicit Construction of Forbidden Subgraphs, Proc. Annual ACM Symposium on Theory of Computing (1991), pp.337–347.Google Scholar
  11. 11.
    M.R. Garey and D.S. Johnson, Algorithms and Intractability: A Guide to the Theory of NP Completeness. San Francisco, Freeman, 1979.Google Scholar
  12. 12.
    P. J. Giblin, Graphs, Surfaces, and Homology: an Introduction to Algebraic Topology. Chapman and Hall, London, New York, 1981.Google Scholar
  13. 13.
    J.R. Gilbert, J.P. Hutchinson and R.E. Tarjan, A Separator Theorem for Graphs of Bounded Genus, J. Algorithms 5 (1984), 391–407.Google Scholar
  14. 14.
    J. L. Gross, T. W.Tucker. Topological Graph Theory, Wiley, New York, 1987.Google Scholar
  15. 15.
    F. Harary, Graph Theory, Addison-Wesley (1969).Google Scholar
  16. 16.
    J.E. Hopcroft, and R.E. Tarjan, Efficient Planarity Testing, J. ACM 21 (1974), 549–568.CrossRefGoogle Scholar
  17. 17.
    J.P. Hutchinson, and G.L. Miller, On Deleting Vertices to Make a Graph of Positive Genus Planar, Discrete Algorithms and Complexity Theory, Academic Press, Boston, 1986, 81–98.Google Scholar
  18. 18.
    R. Jayakumar, K. Thulasiraman, and M.N.S. Swamy, O(n2) Algorithms for Graph Planarization, IEEE Trans. on Comp.-Aided Design 8 (1989), 257–267.CrossRefGoogle Scholar
  19. 19.
    M.S. Krishnamoorthy, and N. Deo, Node-Deletion NP-Complete Problems, SIAM J. Comput. 8 (1979), 619–625.Google Scholar
  20. 20.
    R.J. Lipton, and R.E. Tarjan, A Separator Theorem for Planar Graphs, SIAM J. Appl. Math. 36 (1979), 177–189.CrossRefGoogle Scholar
  21. 21.
    M. Marek-Sadowska, Planarization Algorithm for Integrated Circuits Engineering, Proc. IEEE Int. Symp. on Circuits and Systems, 1979, 919–923.Google Scholar
  22. 22.
    G.L. Miller, Finding Small Simple Cycle Separators for Planar Graphs, J. Computer System Sci. 32 (1986), 265–279.Google Scholar
  23. 23.
    T. Nishizeki, N. Chiba, Planar Graphs: Theory and Algorithms, North Holland, 1988.Google Scholar
  24. 24.
    T. Ozawa and H. Takahashi, A Graph-Planarization Algorithm and its Applications to Random Graphs, in Graph Theory and Algorithms, Lecture Notes in Computer Science, vol. 108, 95–107, Springer-Verlag, 1981.Google Scholar
  25. 25.
    J.A. La Poutré, Alpha-Algorithms for Incremental Planarity Testing, Proc. of the Ann. ACM Symp. on Theory of Comput., 1994, 706–715.Google Scholar
  26. 26.
    O. Sykora and I Vrto, Edge Separators for Graphs of Bounded Genus with Applications, Theoretical Computer Science, 112 (1993).Google Scholar
  27. 27.
    C. Thomassen, The Graph Genus Problem is NP-Complete, Journal of Algorithms, 10, 1989.Google Scholar
  28. 28.
    S.M. Venkatesan, Improved Constants for Some Separator Theorems, J. of Algorithms 8 (1987), 572–578.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Hristo N. Djidjev
    • 1
  • Shankar M. Venkatesan
    • 2
  1. 1.Department of Computer ScienceRice UniversityHoustonUSA
  2. 2.Rutgers UniversityCamden

Personalised recommendations