Planar hybrid systems

  • John Guckenheimer
  • Stewart Johnson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 999)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AP]
    A. A. Andronov, & L. Pontryagin, Systèms Grossiers, Dokl. Akad. Nauk. SSSR, 14, 247–251, (1937).Google Scholar
  2. [BGM]
    L. Back, J. Guckenheimer, & M. Meyers, “A Dynamical Simulation Facility for Hybrid Systems,” Springer Lecture notes in Comp. Sci., 736, 255–267, (1993).Google Scholar
  3. [MS]
    de Melo & van Strien, “One Dimensional Dynamics,” Springer.Google Scholar
  4. [FL]
    X. Feng, & K. Loparo, “Chaotic Motion and its Probabilistic Description in a Family of Two Dimensional Nonlinear Systems with Hysteresis,” J. of Nonlinear Science, 12 #8, (1991).Google Scholar
  5. [G1]
    J. Guckenheimer, “Sensitive Dependence on Initial Conditions for One Dimensional Maps,” Comm. Math. Phys., 70, 133–160, (1980).Google Scholar
  6. [G2]
    J. Guckenheimer, “A Robust Stabilization Strategy for Equilibria,” IEEE Trans. Automatic Control, in press, (1995).Google Scholar
  7. [J]
    S. Johnson, “Simple Hybrid Systems,” Int. J. of Bifurcation & Chaos, to appear.Google Scholar
  8. [K]
    D.E. Koditscheck & M. Buhler, “An Analysis of a Simplified Hopping Robot,” Int. J. Robotics Research, to appear.Google Scholar
  9. [LY]
    A. Lasota & J. Yorke, “On the Existence of invariant Measures for Piecewise Monotonic Transformations,” Trans. Amer. Math. Soc, 186 #12, (1973).Google Scholar
  10. [S]
    S. Sternberg, “On the Structure of Local Homeomorphisms of Euclidean n-Space, II,” Amer. J. Math., 80, 623–631, (1958).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • John Guckenheimer
    • 1
  • Stewart Johnson
    • 2
  1. 1.Mathematics DepartmentCornell UniversityIthaca
  2. 2.Department of MathematicsWilliams CollegeWilliamstown

Personalised recommendations