Fast algorithms for maintaining shortest paths in outerplanar and planar digraphs

  • Hristo N. Djidjev
  • Grammati E. Pantziou
  • Christos D. Zaroliagis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 965)


We present algorithms for maintaining shortest path information in dynamic outerplanar digraphs with sublogarithmic query time. By choosing appropriate parameters we achieve continuous trade-offs between the preprocessing, query, and update times. Our data structure is based on a recursive separator decomposition of the graph and it encodes the shortest paths between the members of a properly chosen subset of vertices. We apply this result to construct improved shortest path algorithms for dynamic planar digraphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bondlaender, “Dynamic Algorithms for Graphs with Treewidth 2”, Proc. 19th WG'93, LNCS 790, pp.112–124, Springer-Verlag, 1994.Google Scholar
  2. 2.
    S. Chaudhuri and C. Zaroliagis, “Shortest Path Queries in Digraphs of Small Treewidth”, Proc. 22nd ICALP, LNCS, Springer-Verlag, 1995, to appear.Google Scholar
  3. 3.
    H. Djidjev, G. Pantziou and C. Zaroliagis, “On-line and Dynamic Algorithms for Shortest Path Problems”, Proc. 12th STACS, LNCS 900, pp.193–204, Springer-Verlag, 1995.Google Scholar
  4. 4.
    E. Feuerstein and A.M. Spaccamela, “Dynamic Algorithms for Shortest Paths in Planar Graphs”, Theor. Computer Science, 116 (1993), pp.359–371.Google Scholar
  5. 5.
    G.N. Frederickson, “Using Cellular Graph Embeddings in Solving All Pairs Shortest Path Problems”, Proc. 30th Annual IEEE Symp. on FOCS, 1989.Google Scholar
  6. 6.
    G.N. Frederickson, “Planar Graph Decomposition and All Pairs Shortest Paths”, J. ACM, Vol.38, No.1, January 1991, pp.162–204.CrossRefGoogle Scholar
  7. 7.
    R. Hassin, “Maximum flow in (s,t)-planar networks”, Inform. Proc. Lett., 13(1981), p.107.Google Scholar
  8. 8.
    G. Miller and J. Naor, “Flows in planar graphs with multiple sources and sinks”, Proc. 30th IEEE Symp. on FOCS, 1989, pp.112–117.Google Scholar
  9. 9.
    B. Schieber and U. Vishkin, “On Finding Lowest Common Ancestors: Simplification and Parallelization”, SIAM J. Computing, 17(6), pp.1253–1262, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Hristo N. Djidjev
    • 1
  • Grammati E. Pantziou
    • 2
  • Christos D. Zaroliagis
    • 3
  1. 1.Computer Science DeptRice UniversityHoustonUSA
  2. 2.Computer Science DeptUniversity of Central FloridaOrlandoUSA
  3. 3.Max-Planck Institut für InformatikSaarbrückenGermany

Personalised recommendations