Advertisement

From a concurrent λ-calculus to the π-calculus

  • Roberto M. Amadio
  • Lone Leth
  • Bent Thomsen
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 965)

Abstract

We explore the (dynamic) semantics of a simply typed λ-calculus enriched with parallel composition, dynamic channel generation, and input-output communication primitives. The calculus, called the λ∥-calculus, can be regarded as the kernel of concurrent-functional languages such as LCS, CML and Facile, and it can be taken as a basis for the definition of abstract machines, the transformation of programs, and the development of modal specification languages. The main technical contribution of this paper is the proof of adequacy of a compact translation of the λ-calculus into the π-calculus.

Keywords

Behaviour Expression Parallel Composition Process Algebra Concurrent Programming Evaluation Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Amadio. Translating Core Facile. Technical Report ECRC-94-3, ECRC, Munich, 1994.Google Scholar
  2. 2.
    R. Amadio, L. Leth, and B. Thomsen. From a Concurrent λ-calculus to the π-calculus. Technical Report ECRC-95-18, ECRC, Munich, 1995.Google Scholar
  3. 3.
    D. Berry, R. Milner, and D. N. Turner. A semantics for ML concurrency primitives. In Proceedings of POPL'92. ACM, 1992.Google Scholar
  4. 4.
    B. Berthomieu, D. Giralt, and J-P. Gouyon. Lcs users' manual. Technical report 91226, LAAS/CNRS, 1991.Google Scholar
  5. 5.
    A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concurrent and functional programming. International Journal of Parallel Programming, 18(2):121–160, 1989.Google Scholar
  6. 6.
    A. Giacalone, P. Mishra, and S. Prasad. Operational and algebraic semantics for facile: A symmetric integration of concurrent and functional programming. In Proceedings of ICALP 90, LNCS 443. Springer-Verlag, 1990.Google Scholar
  7. 7.
    R. Milner. Functions as processes. Journal of Mathematical Structures in Computer Science, 2(2):119–141, 1992.Google Scholar
  8. 8.
    R. Milner. The polyadic π-calculus: A tutorial. In W. Brauer F.L. Bauer and H. Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag, 1993.Google Scholar
  9. 9.
    R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Process, Parts 1–2. Information and Computation, 100(1):1–77, 1992.CrossRefGoogle Scholar
  10. 10.
    R. Milner and D. Sangiorgi. Barbed bisimulation. In SLNCS 623: Proceedings of ICALP 92. Springer-Verlag, 1992.Google Scholar
  11. 11.
    J. Reppy. Cml: A higher-order concurrent language. In Proc. ACM-SIGPLAN 91, Conf. on Prog. Lang. Design and Impl., 1991.Google Scholar
  12. 12.
    B. Thomsen. Plain chocs. Acta Informatica, 30:1–59, 1993. Also appeared as TR 89/4, Imperial College, London.CrossRefGoogle Scholar
  13. 13.
    B. Thomsen, L. Leth, and A. Giacalone. Some issues in the semantics of facile distributed programming. In SLNCS 666: Proceedings of REX School. Springer-Verlag, 1992. Also appeared as Tech Report ECRC 92-32.Google Scholar
  14. 14.
    B. Thomsen, L. Leth, S. Prasad, T.M. Kuo, A. Kramer, F. Knabe, and A. Giacalone. Facile antigua release programming guide. Technical Report ECRC-93-20, ECRC, Munich, December 1993.Google Scholar
  15. 15.
    Victor, B. and Moller, F. The Mobility Workbench — A Tool for the π-Calculus. In Proceedings of the 6th International Conference on Computer Aided Verification, CAV'94, volume 818 of SLNCS, pages 428–440. Springer-Verlag, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Roberto M. Amadio
    • 1
  • Lone Leth
    • 2
  • Bent Thomsen
    • 2
  1. 1.Sophia-AntipolisFrance
  2. 2.MunichGermany

Personalised recommendations