Computing a shortest watchman path in a simple polygon in polynomial-time

  • Svante Carlsson
  • Håkan Jonsson
Invited Presentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 955)

Abstract

In this paper we present the first polynomial-time algorithm for finding the shortest polygonal chain in a simple polygon such that each point of the polygon is visible from some point on the chain. This chain is called the shortest watchman path, or equivalently, the shortest weakly visible curve of the polygon. In proving this result we also give polynomial time algorithms for finding the shortest aquarium-keeper's path that visits all edges of the polygon, and for finding the shortest postman path that visits all vertices of a polygon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aggarwal. The Art Gallery Theorem: Its variations, applications and algorithmic aspects. PhD thesis, John Hopkins University, 1984.Google Scholar
  2. 2.
    B. K. Bhattacharya, A. Mukhopadhyay, and G. T. Toussaint. A linear time alogorithm for computing the shortest line segment from which a polygon is weakly externally visible. In Proceedings of 2nd WADS, pages 412–424. Springer-Verlag, 1991.Google Scholar
  3. 3.
    S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the shortest watchman route in a simple polygon. In Proceedings of ISAAC'93, pages 58–67. Springer-Verlag, 1993. LNCS 762.Google Scholar
  4. 4.
    B. Chazelle. Triangulating a simple polygon in linear time. In Proceedings of the 31th Symposium on Foundations of Computer Science, pages 220–230, 1990.Google Scholar
  5. 5.
    W. Chin and S. Ntafos. Optimum watchman routes. Inform. Process. Lett., 28:39–44, 1988.CrossRefGoogle Scholar
  6. 6.
    W. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Disc. Comp. Geometry, 6:9–31, 1991.Google Scholar
  7. 7.
    W. Chin and S. Ntafos. The zookeeper route problem. Inform. Sci., 63:245–259, 1992.CrossRefGoogle Scholar
  8. 8.
    J. Czyzowicz, P. Egyed, H. Everett, D. Rappaport, T. Shermer, D. Souvaine, G. Toussaint, and J. Urrutia. The aquarium keeper's problem. In Proceedings of the 2nd ACM-SIAM Symposium on Discrete Algorithms, pages 459–464, 1991.Google Scholar
  9. 9.
    G. Das, P. J. Heffernan, and G. Narasimhan. Finding all weakly-visible chords of a polygon in linear time. In Proceedings of the 4th Scandinavian Workshop on Algorithm Theory (SWAT'94), pages 119–130. Springer-Verlag, 1994. LNCS 824.Google Scholar
  10. 10.
    G. Das and G. Narasimhan. Optimal linear-time algorithm for the shortest illuminating line segment in a polygon. In Proceedings of the 10th Annual Symposium on Computational Geometry, pages 259–266, 1994.Google Scholar
  11. 11.
    J. Forsberg, U. Larsson, and Å. Wernersson. On mobile robot navigation in cluttered rooms using the range weighted hough transform. IEEE Robotics and Automation Society Magazine, 1995. Department of Computer Science and Electrical Engineering, Luleå University of Technology. Accepted for publication in the special issue on mobile robots.Google Scholar
  12. 12.
    L. Guibas, J. Hersberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233, 1987.CrossRefGoogle Scholar
  13. 13.
    J. Hersberger and J. Snoeyink. An efficient solution to the zookeeper's problem. In Proceedings of the 6th Canadian Conference on Computational Geometry, pages 104–109, 1994. U. of Saskatchewan, Saskatoon, Ontario.Google Scholar
  14. 14.
    J. Hersberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk. In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, pages 54–63, 1993.Google Scholar
  15. 15.
    J.-C. Latombe, editor. Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA, 1991.Google Scholar
  16. 16.
    D.T. Lee and A.K. Lin. Computational complexity of art gallery problems. IEEE Trans. Info. Theory, 32(2):276–282, 1986.CrossRefGoogle Scholar
  17. 17.
    B. Nilsson. Guarding Art Galleries; Methods for Mobile Guards. PhD thesis, Lund University, Sweden, 1995.Google Scholar
  18. 18.
    J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford univ. press, 1987. ISBN 0-19-503965-3.Google Scholar
  19. 19.
    J.-R. Sack and S. Suri. An optimal algorithm for detecting weak visibility. IEEE Trans. Comput., 39:1213–1219, 1990.CrossRefGoogle Scholar
  20. 20.
    T. Shermer. Recent results in art galleries. In Proceedings of the IEEE, pages 1384–1399, September 1992.Google Scholar
  21. 21.
    X.-H. Tan, T. Hirata, and Y. Inagaki. An incremental algorithm for constructing shortest watchman routes. In Proceedings of ISA'91, pages 163–175. Springer-Verlag, 1991. LNCS 557.Google Scholar
  22. 22.
    X.-H. Tan, T. Hirata, and Y. Inagaki. Constructing shortest watchman routes by divide-and-conquer. In Proceedings of ISAAC'93, pages 68–77. Springer-Verlag, 1993. LNCS 762.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Svante Carlsson
    • 1
  • Håkan Jonsson
    • 1
  1. 1.Division of Computer ScienceLuleå University of TechnologyLuleåSweden

Personalised recommendations