Lévy processes and relativistic quantum dynamics

  • Piotr Garbaczewski
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

The traditional Gaussian framework (Wiener process as the “free noise”, with the Laplacian as noise generator) is extended to encompass any infinitely divisible probability law covered by the Lévy-Khintchine formula. It implies a family of random environment models (of the fluctuating medium) governed by the generally non-Gaussian “free noises”. Since the so called relativistic Hamiltonians |△| and √0−▽+ m2m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic quantum propagation once an analytic continuation in time of the corresponding holomorphic semigroup is accomplished. The pertinent stochastic processes are identified to be spatial jump processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Zambrini, J. Math. Phys. 27, 3207 (1986).Google Scholar
  2. 2.
    Ph. Blanchard, P. Garbaczewski, Phys. Rev. E49, 3815 (1994).Google Scholar
  3. 3.
    P. Garbaczewski, R. Olkiewicz, “Why Quantum Dynamics can be Formulated as a Markov Process”, Phys. Rev. A, in press (1995).Google Scholar
  4. 4.
    P. Garbaczewski, J.R. Klauder, R. Olkiewicz, “The Schrödinger Problem, Lévy Processes and Noise in Relativistic Quantum Mechanics”, Phys. Rev. E, in press (1995).Google Scholar
  5. 5.
    E. Nelson, “Quantum Fluctuations”, Princeton University Press, Princeton, 1985.Google Scholar
  6. 6.
    L. Breiman, “Probability”, Addison-Wesley, Reading, 1968.Google Scholar
  7. 7.
    E.W. Montroll, B.J. West., in: “Fluctuation Phenomena”, ed. by E.W. Montroll and J.L. Lebowitz, North-Holland, Amsterdam, 1987Google Scholar
  8. 8.
    A. Janicki, A. Weron, “Simulation and Chaotic Behaviour of α-stable Stochastic Processes”, Marcel Dekker, New York, 1994.Google Scholar
  9. 9.
    H.C. Fogedby, Phys. Rev. Lett. 73, 2517 (1994).Google Scholar
  10. 10.
    B.B. Mandelbrot, “The Fractal Geometry of Nature”, W.H. Freeman, New York, 1982.Google Scholar
  11. 11.
    J. Klafter, A. Blumen, M.F. Shlesinger, Phys. Rev. A35, 3081 (1987).Google Scholar
  12. 12.
    X.J. Wang, Phys. Rev. A45, 8407 (1992).Google Scholar
  13. 13.
    R. Carmona, W.C. Masters, B. Simon, Journ. Funct. Anal. 91, 117 (1990).Google Scholar
  14. 14.
    G.F. De Angelis, J. Math. Phys. 31, 1408 (1990).Google Scholar
  15. 15.
    P. Garbaczewski, Phys. Lett. A172, 208 (1993).Google Scholar
  16. 16.
    I.I. Gikhman, A.V. Skorokhod, “Introduction to the Theory of Random Processes”, W.B. Saunders Comp., Philadelphia, 1969.Google Scholar
  17. 17.
    P. Garbaczewski and R. Olkiewicz, “Feynman-Kac Kernels in Markovian Representations of the Schrödinger Interpolating Dynamics”, in preparationGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Piotr Garbaczewski
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WroclawWroclawPoland

Personalised recommendations