A triadic approach to formal concept analysis

  • Fritz Lehmann
  • Rudolf Wille
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 954)


Formal Concept Analysis, developed during the last fifteen years, has been based on the dyadic understanding of a concept constituted by its extension and its intension. The pragmatic philosophy of Charles S. Peirce with his three universal categories, and experiences in data analysis, have suggested a triadic approach to Formal Concept Analysis. This approach starts with the primitive notion of a triadic context defined as a quadruple (G, M, B, Y) where G, M, and B are sets and Y is a ternary relation between G, M, and B, i.e. Y ⊑ G×M×B; the elements of G, M, and B are called objects, attributes, and conditions, respectively, and (g, m,b) ε Y is read: the object g has the attribute m under (or according to) the condition b. A triadic concept of a triadic context (G, M, B, Y) is defined as a triple (A1, A2, A3) with A1× A2sx A3Y which is maximal with respect to component-wise inclusion. The triadic concepts are structured by three quasiorders given by the inclusion order within each of the three components. In analogy to the dyadic case, we discuss how the ordinal structure of the triadic concepts of a triadic context can be analysed and graphically represented. A basic result is that those structures can be understood order-theoretically as “complete trilattices” up to isomorphism.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AN62]
    A. Arnaud, P. Nicole: La logique ou I'art de penser. Paris 1662.Google Scholar
  2. [DIN79]
    Deutsches Institut für Normung: DIN 2330; Begriffe und Benennungen: Allgemeine Grundsätze. Beuth, Berlin, Köln 1979.Google Scholar
  3. [Ga87]
    B. Ganter: Algorithmen zur Formalen Begriffsanalyse. In: B. Ganter, R. Wille, K.E. Wolff: Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim 1987, 241–254.Google Scholar
  4. [GK94]
    B. Ganter, R. Krauße: TRICEPT — Programm zur triadischen Begriffs-analyse. Institut für Algebra, TU Dresden 1994.Google Scholar
  5. [GW95]
    B. Ganter, R. Wille: Formale Begriffsanalyse: Mathematische Grundlagen. Springer, Heidelberg (in preparation)Google Scholar
  6. [Gi81]
    G. Gigerenzer: Messung als Modellbildung in der Psychologie. Reinhardt Verlag, München, Basel 1981.Google Scholar
  7. [KLST71]
    D.H. Krantz, R.D. Luce, P. Suppes, A. Tversky: Foundations of measurement. Vol 1. Academic Press, San Diego 1971.Google Scholar
  8. [Kr60]
    P. Krausser: Die drei fundamentalen Strukturkategorien bei Charles S. Peirce. Philosophia Naturalis 6 (1960), 3–31.Google Scholar
  9. [KOG94]
    S. Krolak-Schwerdt, P. Orlik, B. Ganter: TRIPAT: a model for analyzing three-mode binary data. In: H.-H. Bock, W. Lenski, M.M. Richter (eds.): Information systems and data analysis. Springer, Berlin-Heidelberg 1994, 298–307.Google Scholar
  10. [Ma79]
    J. Malcolm: A reconsideration of the identity and inherence theories of the copula. J. Hist. Philos. 17 (1979), 383–400.Google Scholar
  11. [Mar92]
    R. Marty: Foliated Semantic networks: concepts, facts, qualities. Computers & Mathematics with Applications 23 (1992), 697–696; reprinted in: F. Lehmann (ed.): Semantic networks in artificial intelligence. Pergamon Press, Oxford 1992.Google Scholar
  12. [Pe35]
    Ch. S. Peirce: Collected Papers. Harvard Univ. Press, Cambridge 1931–35.Google Scholar
  13. [We89]
    H. Weidemann: Prädikation. In: Historisches Wörterbuch der Philosophie. Band 7. Schwabe, Basel 1989, 1194–1208.Google Scholar
  14. [Wi82]
    R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston 1982, 445–470.Google Scholar
  15. [Wi87]
    R. Wille: Bedeutungen von Begriffsverbänden. In: B. Ganter, R. Wille, K.E. Wolff (Hrsg.): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim 1987, 161–211.Google Scholar
  16. [Wi89a]
    R. Wille: Lattices in data analysis: how to draw them with a computer. In: I. Rival (ed.): Algorithms and order. Kluwer: Dordrecht, Boston 1989, 33–58.Google Scholar
  17. [Wi89b]
    R. Wille: Knowledge acquisition by methods of formal concept analysis. In: E. Diday (ed.): Data analysis, learning symbolic and numeric knowledge. Nova Science Publ., New York, Budapest 1989, 365–380.Google Scholar
  18. [Wi92a]
    R. Wille: Concept lattices and conceptual knowledge systems. Computers & Mathematics with Applications. 23 (1992), 493–515.Google Scholar
  19. [Wi92b]
    R. Wille: Begriffliche Datensysteme als Werkzeug der Wissenskommunikation. In: H.H. Zimmermann, H.-D. Luckhardt, A. Schulz (Hrsg.): Mensch und Maschine — Informationelle Schnittsstellen der Kommunikation. Universitätsverlag Konstanz, Konstanz 1992, 63–73.Google Scholar
  20. [Wi94a]
    R. Wille: Plädoyer für eine philosophische Grundlegung der Begrifflichen Wissensverarbeitung. In: R. Wille, M. Zickwolff (Hrsg.): Begriffliche Wissensverarbeitung: Grundfragen und Aufgaben. B.I.-Wissenschaftsverlag, Mannheim 1994, 11–25.Google Scholar
  21. [Wi94b]
    R. Wille: Restructuring mathematical logic: an approach based on Peirce's pragmatism. In: P. Agliano, A. Ursini (eds.): International Conference on Logic and Algebra, Siena 1994 (to appear)Google Scholar
  22. [Wi95]
    R. Wille: The basic theorem of triadic concept analysis. Order (to appear)Google Scholar
  23. [WZ95]
    R. Wille, M. Zickwolff: Grundlegung einer Triadischen Begriffsanalyse (in preparation)Google Scholar
  24. [WiU95]
    U. Wille: Geometrie representation of ordinal contexts. Doctoral thesis, Univ. Gießen 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Fritz Lehmann
    • 1
  • Rudolf Wille
    • 2
  1. 1.GRANDAI SoftwareIrvine
  2. 2.Fachbereich MathematikTechnische Hochschule DarmstadtDeutschland

Personalised recommendations