On the desirability and limitations of linear spatial database models

  • Luc Vandeurzen
  • Marc Gyssens
  • Dirk Van Gucht
Spatial Data Models
Part of the Lecture Notes in Computer Science book series (LNCS, volume 951)

Abstract

A general linear spatial database model is presented in which both the representation and the manipulation of non-spatial data is based on first-order logic over the real numbers with addition. We first argue the naturalness of our model and propose it as a general framework to study and compare linear spatial database models. However, we also establish that no reasonable safe extension of our data manipulation language can be complete for the linear spatial queries in that even very simple queries such as deciding colinearity or computing convex hull of a finite set of points cannot be expressed. We show that this fundamental result has serious ramifications for the way in which query languages for linear spatial database models have to be designed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Afrati, S. Cosmadakis, S. Grumbach, and G. Kuper, “Linear Versus Polynomial Constraints in Database Query Languages” in Proceedings 2nd Int'l Workshop on Principles and Practice of Constraint Programming (Rosario, WA), A. Borning, ed., Lecture Notes in Computer Science, vol. 874, Springer-Verlag, Berlin, 1994, pp. 181–192.Google Scholar
  2. 2.
    W.G. Aref and H. Samet, “Extending a Database with Spatial Operations” in Proceedings 2nd Symposium on Advances in Spatial Databases, O. Günther, H.-J. Schek, eds., Lecture Notes in Computer Science, vol. 525, Springer-Verlag, Berlin, 1991, pp. 299–319.Google Scholar
  3. 3.
    D.S. Arnon, “Geometric Reasoning with Logic and Algebra” Artificial Intelligence, 37, 1988, pp. 37–60.Google Scholar
  4. 4.
    J. Bochnak, M. Coste, and M.F. Roy, Géométrie algébrique réelle, in Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 12, Springer-Verlag, Berlin, 1987.Google Scholar
  5. 5.
    A. Brodsky, J. Jaffar, and M.J. Maher, “Toward Practical Constraint Databases” in Proceedings 19th Int'l Conf. on Very Large Databases (Dublin, Ireland), 1993, pp. 567–580.Google Scholar
  6. 6.
    A. Brodsky and Y. Kornatzky, “The LyriC Language: Querying Constraint Objects” in Proceedings Post-ILPS'94 Workshop on Constraints and Databases (Ithaca, NY), 1994.Google Scholar
  7. 7.
    A. BrØndsted, An Introduction to Convex Polytopes, in Graduate Texts in Mathematics, vol. 90, Springer-Verlag, New York, 1983.Google Scholar
  8. 8.
    I. Carlbom, “An Algorithm for Geometric Set Operations Using Cellular Subdivision Techniques” IEEE Computer Graphics and Applications, 7:5, 1987, pp. 44–55.Google Scholar
  9. 9.
    A. Chandra and D. Harel, “Computable Queries for Relational Database Systems” Journal of Computer and System Sciences, 21:2, 1980, pp. 156–178.Google Scholar
  10. 10.
    S.S. Cosmadakis and G.M. Kuper, “Expressiveness of First-Order Constraint Languages” Technical Report, ECRC-94-13, European Computer-Industry Research Centre, Munich, 1994.Google Scholar
  11. 11.
    G.E. Collins, “Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition” in Proceedings 2nd GI Conf. on Automata Theory and Formal Languages (Kaiserslautern, Germany), H. Brakhage, ed., Lecture Notes in Computer Science, vol. 33, 1975, pp. 134–183.Google Scholar
  12. 12.
    J. Nievergelt and M. Freeston, eds., Special issue on spatial data, Computer Journal, 37:1, 1994.Google Scholar
  13. 13.
    M.J. Egenhofer, “A Formal Definition of Binary Topological Relationships” in Proceedings Foundations of Data Organization and Algorithms, W. Litwin and H.-J. Schek, eds., Lecture Notes in Computer Science, vol. 367, Springer-Verlag, Berlin, 1989, pp. 457–472.Google Scholar
  14. 14.
    M.J. Egenhofer, “Why not SQL!”, Int'l J. on Geographical Information Systems, 6:2, 1992, pp. 71–85.Google Scholar
  15. 15.
    O. Günther, ed., Efficient Structures for Geometric Data Management, in Lecture Notes in Computer Science, vol. 337, Springer-Verlag, Berlin, 1988.Google Scholar
  16. 16.
    R.H. Güting, “Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems” in Advances in Database Technology—EDBT '88, Proceedings Int'l Conf. on Extending Database Technology (Venice, Italy), J.W. Schmidt, S. Ceri, and M. Missikoff, eds., Lecture Notes in Computer Science, vol. 303, Soringer-Verlag, Berlin, 1988, pp. 506–527.Google Scholar
  17. 17.
    R.H. Güting, “Gral: An Extensible Relational Database System for Geometric Applications” in Proceedings 15th Int'l Conf. on Very Large Databases (Amsterdam, the Netherlands), 1989, pp. 33–34.Google Scholar
  18. 18.
    R.H. Güting, “An Introduction to Spatial Database Systems” VLDB-Journal, 3:4, 1994, pp. 357–399.Google Scholar
  19. 19.
    T. Huynh, C. Lassez, and J.-L. Lassez. Fourier Algorithm Revisited. In Proceedings 2nd Int'l Conf. on Algebraic an Logic Programming, H. Kirchner and W. Wechler, eds. Lecture Notes in Computer Science, volume 463. Springer Verlag, Berlin, 1990, pp. 117–131.Google Scholar
  20. 20.
    J. Heintz, T. Recio, and M.F. Roy. “Algorithms in Real Algebraic Geometry and Applications to Computational Geometry” in Discrete and Computational Geometry, W. Steiger, J. Goodman, and R. Pollack, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 6, AMS-ACM, 1991, pp. 137–163.Google Scholar
  21. 21.
    J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Publ. Co., Reading, MA, 1979, pp. 355–357.Google Scholar
  22. 22.
    P.C. Kanellakis and D.Q. Goldin, “Constraint Programming and Database Query Languages” in Proceedings 2nd Conf. on Theoretical Aspects of Computer Software, M. Hagiya and J.C. Mitchell, eds., Lecture Notes in Computer Science, vol. 789, Springer-Verlag, Berlin, 1994.Google Scholar
  23. 23.
    P.J. Kelly and M.L. Weiss. Geometry and Convexity: a Study in Mathematical Methods, J. Wiley and Sons, New York, 1979.Google Scholar
  24. 24.
    P.C. Kanellakis, G.M. Kuper and P.Z. Revesz, “Constraint Query Languages” Journal of Computer and System Sciences, to appear, also in Proceedings 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Nashville, TN), 1990, pp. 299–313.Google Scholar
  25. 25.
    J.-L. Lassez, “Querying Constraints” in Proceedings 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Nashville, TN), 1990, pp. 288–298.Google Scholar
  26. 26.
    M. Liebling and A. Prodon, “Algorithmic Geometry” in Scientific Visualization and Graphics Simulation, D. Thalmann, ed., J. Wiley and Sons. pp. 14–25.Google Scholar
  27. 27.
    P. McMullen and G.C. Shephard, Convex Polytopes and the Upper Bound Conjecture, University Press, Cambridge, 1971.Google Scholar
  28. 28.
    J. Paredaens, J. Van den Bussche, and D. Van Gucht, “Towards a Theory of Spatial Database Queries” in Proceedings 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Minneapolis, MN), 1994. pp. 279–288.Google Scholar
  29. 29.
    N. Pissinou, R. Snodgrass, R. Elmasri, I. Mumick, T. özsu, B. Pernici, A. Segef. B. Theodoulidis, and U. Dayal, “Towards an Infrastructure for Temporal Databases” SIGMOD Records, 23:1, 1994, pp. 35–51.Google Scholar
  30. 30.
    F.P. Preparata and D.E. Muller. “Finding the Intersection of n Half-Spaces in Time O(nlogn)Theoretical Computer Science, 8, 1979, pp. 45–55.Google Scholar
  31. 31.
    L.K. Putnam and P.A. Subrahmanyan, “Boolean Operations on n-Dimensional Objects” IEEE Computer Graphics and Applications, 6:6, 1986, pp. 43–51.Google Scholar
  32. 32.
    E. Robertson, personal communications, 1994.Google Scholar
  33. 33.
    N. Roussopoulos, C. Faloutsos, and T. Sellis, “An Efficient Pictorial Database System for PSQL” IEEE Transactions on Software Engineering, 14:5, 1988, pp. 639–650.Google Scholar
  34. 34.
    W. Schwabhauser, W. Szmielew, and A. Tarski. Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.Google Scholar
  35. 35.
    P. Svensson and Z. Huang, “Geo-Sal: A Query Language for Spatial Data Analysis” in Proceedings 2nd Symposium on Advances in Spatial Databases, O. Günther and H.-J. Schek, eds. Lecture Notes in Computer Science, vol. 525. Springer-Verlag, Berlin, 1991, pp. 119–140.Google Scholar
  36. 36.
    B. Tilove, “Set Membership Classification: a Unified Approach to Geometric Intersection Problems” IEEE Transactions on Computers, C-29:10, 1980, pp. 874–883.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Luc Vandeurzen
    • 1
  • Marc Gyssens
    • 1
  • Dirk Van Gucht
    • 2
  1. 1.Dept. WNIUniversity of LimburgDiepenbeekBelgium
  2. 2.Computer Science Dept.Indiana Univ.BloomingtonUSA

Personalised recommendations