Advertisement

Theory of 2-structures

  • A. Ehrenfeucht
  • T. Harju
  • G. Rozenberg
Concurrency I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 944)

Keywords

Reversibility Function Local Transformation Hierarchical Representation Modular Decomposition Edge Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bonizzoni, P., Primitive 2-structures with the (n−2)-property, Theoret. Comput. Sci. 132 (1994), 151–178.Google Scholar
  2. [2]
    Buer, H. and R.H. Möhring, A fast algorithm for the decomposition of graphs and posets, Math. Oper. Res. 8 (1983), 170–184.Google Scholar
  3. [3]
    Ehrenfeucht, A., T. Harju and G. Rozenberg, Permuting transformation monoids, Semigroup Forum 47 (1993), 123–125.Google Scholar
  4. [4]
    Ehrenfeucht, A., T. Harju and G. Rozenberg, Invariants of 2-structures on groups of labels, Manuscript (1994).Google Scholar
  5. [5]
    Ehrenfeucht, A., T. Harju and G. Rozenberg, Quotients and plane trees of group labeled 2-structures, Leiden University, Department of Computer Science, Technical Report No. 03, 1994.Google Scholar
  6. [6]
    Ehrenfeucht, A., T. Harju and G. Rozenberg, 2-structures, Manuscript, 1995.Google Scholar
  7. [7]
    Ehrenfeucht, A., H.J. Hoogeboom, P. ten Pas, and G. Rozenberg, An introduction to context-free text grammars, in Developments in Language Theory, G. Rozenberg and A. Salomaa, eds., World Scientific Publishing, 1994.Google Scholar
  8. [8]
    Ehrenfeucht, A. and G. Rozenberg, Theory of 2-structures, Parts I and II, Theoret. Comput. Sci. 70 (1990), 277–303 and 305–342.Google Scholar
  9. [9]
    Ehrenfeucht, A. and G. Rozenberg, Primitivity is hereditary for 2-structures Theoret. Comput. Sci. 70 (1990), 343–358.Google Scholar
  10. [10]
    Ehrenfeucht, A. and G. Rozenberg, Partial (set) 2-structures; part II: State spaces of concurrent systems, Acta. Informatica 27 (1990), 343–368.Google Scholar
  11. [11]
    Ehrenfeucht, A. and G. Rozenberg, Angular 2-structures, Theoret. Comput. Sci. 92 (1992), 227–248.Google Scholar
  12. [12]
    Ehrenfeucht, A. and G. Rozenberg, T-structures, T-functions, and texts, Theoret. Comput. Sci. 116 (1993), 227–290.Google Scholar
  13. [13]
    Ehrenfeucht, A. and G. Rozenberg, Dynamic labeled 2-structures, Mathematical Structures in Computer Science, to appear.Google Scholar
  14. [14]
    Engelfriet, J., T. Harju, A. Proskurowski and G. Rozenberg, Characterization and Complexity of Uniformly Non-Primitive Labeled 2-Structures, Theoret. Comput. Sci., to appear.Google Scholar
  15. [15]
    Harju, T. and G. Rozenberg, Decomposition of infinite labeled 2-structures, lecture Notes in Computer Science 812 (1994), 145–158.Google Scholar
  16. [16]
    Muller J.H. and J. Spinrad, Incremental Modular Decomposition, J. of the ACM 36 (1989), 1–19.Google Scholar
  17. [17]
    Schmerl, J. H. and W. T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993), 191–205.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. Ehrenfeucht
    • 1
  • T. Harju
    • 2
  • G. Rozenberg
    • 1
    • 3
  1. 1.Department of Computer ScienceUniversity of Colorado at BoulderBoulderUSA
  2. 2.Department of MathematicsUniversity of TurkuTurkuFinland
  3. 3.Department of Computer ScienceLeiden UniversityRA LeidenThe Netherlands

Personalised recommendations