Advertisement

Cosmic strings confront COBE

  • B. Allen
  • R. R. Caldwell
  • E. P. S. Shellard
  • A. Stebbins
  • S. Veeraraghavan
Part II - Large-Scales Structure Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 455)

Abstract

We investigate large-angle anisotropies in the cosmic microwave radiation background which are induced by cosmic strings. We numerically evolve a string network from a redshift Z-100 to the present day and we use this data to generate a full-sky temperature map using sophisticated Green's function methods. Based on a limited number of realizations, we have compared the results of our simulations with the observations of the COBS-DMR experiment, demonstrating broad consistency. We have obtained a preliminary normalization for the string mass-per-unit-length μ in the cosmic string scenario.

Keywords

Dark Matter Cosmic String Galaxy Formation Past Light Cone String Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.W.B. Kibble, ‘Some implications of cosmological phase transitions', Phys. Rep. 67, 183 (1980).CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ya.B. Zeldovich, ‘Cosmological fluctuations produced near a singularity', MNRAS 192, 663 (1980); A. Vilenkin, ‘Cosmological density fluctuations produced by vacuum strings', Phys. Rev. Lett. 46, 1169 (1981).Google Scholar
  3. 3.
    See, for example: A. Vilenkin & E.P.S. Shellard, Cosmic strings and other topological defects (Cambridge, 1994).Google Scholar
  4. 4.
    J. Silk & A. Vilenkin, ‘Cosmic strings and galaxy formation', Phys. Rev. Lett. 53, 1700 (1984); T. Vachaspati, ‘Cosmic strings and the large-scale structure of the universe', Phys. Rev. Lett. 57, 1655 (1986); A. Stebbins, S. Veeraraghavan, R. Brandenberger, J. Silk & N. Turok, ‘Cosmic string wakes', Ap. J. 322, 1 (1987); R. Brandenberger, L. Perivolaropoulos & A. Stebbins, ‘Cosmic strings, hot dark matter and the large scale structure of the universe', Int. J. Mod. Phys. A 5, 1633 (1990).CrossRefGoogle Scholar
  5. 5.
    T. Vachaspati & A. Vilenkin, ‘Large scale structure from wiggly cosmic strings', Phys. Rev. Lett. 67, 1057 (1992); D. Vollick, 'small scale structure on cosmic strings and galaxy formation', Phys. Rev. D 45, 1884 (1992).CrossRefGoogle Scholar
  6. 6.
    A. Vilenkin, ‘Gravitational radiation from cosmic strings', Phys. Lett. 107B, 47 (1981).Google Scholar
  7. 7.
    R.R. Caldwell & B. Allen, ‘Cosmological constraints on cosmic string gravitational radiation', Phys. Rev. D45, 3447 (1992); R.R. Caldwell, ‘The current status of observational constraints on cosmic strings', Fermilab preprint 196-A (1993).Google Scholar
  8. 8.
    D. Bennett, A. Stebbins, & F.R. Bouchet, ‘The implications of the COBEDMR results for cosmic strings', Ap. J. Lett. 399, L5 (1992).Google Scholar
  9. 9.
    A. Albrecht & A. Stebbins, ‘Perturbations from cosmic strings in cold dark matter', Phys. Rev. Lett. 68, 2121 (1992); A. Albrecht & A. Stebbins, ‘Cosmic string with a massive light neutrino', Phys. Rev. Lett. 69, 2615 (1992).CrossRefPubMedGoogle Scholar
  10. 10.
    L. Perivolaropoulos, ‘COBE vs. cosmic strings: an analytical model', Phys. Lett. 298, 305 (1993).CrossRefGoogle Scholar
  11. 11.
    N. Kaiser & A. Stebbins, ‘Microwave anisotropy due to cosmic strings', Nature 310, 391 (1984).CrossRefGoogle Scholar
  12. 12.
    R. Moessner, L. Perivolaropoulos, & R. Brandenberger, ‘A cosmic string specific signature on the cosmic microwave background', Brown preprint HET-911 (1993).Google Scholar
  13. 13.
    D. Coulson, P. Ferreira, P. Graham, & N. Turok, ‘Microwave anisotropies from cosmic defects', Nature 368, 27 (1994).CrossRefGoogle Scholar
  14. 14.
    L. Perivolaropoulos, 'spectral analysis of microwave background perturbations induced by cosmic strings', CfA preprint 3796 (1994.Google Scholar
  15. 15.
    C. L. Bennett, et al., Cosmic temperature fluctuations from two years of COBE DMR observations, COBE preprint 94-01 (1994).Google Scholar
  16. 16.
    B. Allen & E.P.S. Shellard, ‘Cosmic string evolution: a numerical simulation', Phys. Rev. Lett. 64, 119 (1990); E.P.S. Shellard & B. Allen, ‘On the evolution of cosmic strings', in Formation and evolution of cosmic strings, G.W. Gibbons, S.W. Hawking & T. Vachaspati, eds. (Cambridge, 1990).CrossRefPubMedGoogle Scholar
  17. 17.
    R. Sachs & A. Wolfe, ‘Perturbations of a cosmological model and angular variations of the microwave background', Ap. J. 147, 73 (1967).CrossRefGoogle Scholar
  18. 18.
    S. Veeraraghavan & A. Stebbins, ‘Causal compensated perturbations in cosmology', Ap. J. 365, 37 (1990); S. Veeraraghavan & A. Stebbins, in preparation (1994.CrossRefGoogle Scholar
  19. 19.
    B. Allen, R.R. Caldwell, E.P.S. Shellard, A. Stebbins & S. Veeraraghavan, ‘Large scale CMBR anisotropies induced by cosmic strings', in preparation (1994).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • B. Allen
    • 1
    • 2
  • R. R. Caldwell
    • 3
  • E. P. S. Shellard
    • 2
    • 3
  • A. Stebbins
    • 4
  • S. Veeraraghavan
    • 5
  1. 1.Department of PhysicsUniversity of WisconsinMilwaukee
  2. 2.Isaac Newton InstituteCambridgeUK
  3. 3.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
  4. 4.NASA/Fermilab Astrophysics CenterFermi National Accelerator LaboratoryBatavia
  5. 5.Goddard Space Flight CenterGreenbelt

Personalised recommendations