On implementing push-relabel method for the maximum flow problem

  • Boris V. Cherkassky
  • Andrew V. Goldberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 920)

Abstract

We study efficient implementations of the push-relabel method for the maximum flow problem. The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup is due to the combination of heuristics used in our implementations. We also exhibit a family of problems for which the running time of all known methods seem to have a roughly quadratic growth rate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow Problem. SIAM J. Comput., 18:939–954, 1989.Google Scholar
  2. 2.
    R. J. Anderson and J. C. Setubal. Goldberg's Algorithm for the Maximum Flow in Perspective: a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 1–18. AMS, 1993.Google Scholar
  3. 3.
    J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a Maximum Flow be Computed in o(nm) Time? In Proc. ICALP, 1990.Google Scholar
  4. 4.
    J. Cheriyan and S. N. Maheshwari. Analysis of Preflow Push Algorithms for Maximum Netwrok Flow. SIAM J. Comput., 18:1057–1086, 1989.Google Scholar
  5. 5.
    B. V. Cherkassky. A Fast Algorithm for Computing Maximum Flow in a Network. In A. V. Karzanov, editor, Collected Papers, Issue 3: Combinatorial Methods for Flow Problems, pages 90–96. The Institute for Systems Studies, Moscow, 1979. In Russian. English translation appears in AMS Trans., Vol. 158, pp. 23–30, 1994.Google Scholar
  6. 6.
    G. B. Dantzig. Application of the Simplex Method to a Transportation Problem. In T. C. Koopmans, editor, Activity Analysis and Production and Allocation, pages 359–373. Wiley, New York, 1951.Google Scholar
  7. 7.
    G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Princeton, NJ, 1962.Google Scholar
  8. 8.
    U. Derigs and W. Meier. Implementing Goldberg's Max-Flow Algorithm — A Computational Investigation. ZOR — Methods and Models of Operations Research, 33:383–403, 1989.Google Scholar
  9. 9.
    U. Derigs and W. Meier. An Evaluation of Algorithmic Refinements and Proper Data-Structures for the Preflow-Push Approach for Maximum Flow. In ASI Series on Computer and System Sciences, volume 8, pages 209–223. NATO, 1992.Google Scholar
  10. 10.
    E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl., 11:1277–1280, 1970.Google Scholar
  11. 11.
    J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach., 19:248–264, 1972.Google Scholar
  12. 12.
    L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.Google Scholar
  13. 13.
    A. V. Goldberg. A New Max-Flow Algorithm. Technical Report MIT/LCS/TM-291, Laboratory for Computer Science, M.I.T., 1985.Google Scholar
  14. 14.
    A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science, M.I.T., 1987).Google Scholar
  15. 15.
    A. V. Goldberg, É. Tardos, and R. E. Tarjan. Network Flow Algorithms. In B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, editors, Flows, Paths, and VLSI Layout, pages 101–164. Springer Verlag, 1990.Google Scholar
  16. 16.
    A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. In Proc. 18th Annual ACM Symposium on Theory of Computing, pages 136–146, 1986.Google Scholar
  17. 17.
    A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921–940, 1988.Google Scholar
  18. 18.
    D. Goldfarb and M. D. Grigoriadis. A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow. Annals of Oper. Res., 13:83–123, 1988.Google Scholar
  19. 19.
    D. S. Johnson and C. C. McGeoch, editors. Network Flows and Matching: First DIMACS Implementation Challenge. AMS, 1993.Google Scholar
  20. 20.
    A. V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok., 15:434–437, 1974.Google Scholar
  21. 21.
    V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 157–164, 1992.Google Scholar
  22. 22.
    Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Maximum Flow Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 19–42. AMS, 1993.Google Scholar
  23. 23.
    R. E. Tarjan. A Simple Version of Karzanov's Blocking Flow Algorithm. Operations Research Letters, 2:265–268, 1984.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Boris V. Cherkassky
    • 1
  • Andrew V. Goldberg
    • 2
  1. 1.Central Institute for Economics and MathematicsMoscowRussia
  2. 2.Computer Science DepartmentStanford UniversityStanfordUSA

Personalised recommendations