Solving pseudo-Boolean constraints

  • Alexander Bockmayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 910)

Abstract

Pseudo-Boolean constraints are equations or inequalities between integer polynomials in 0–1 variables. On the one hand, they generalize Boolean constraints, on the other hand, they are a restricted form of finite domain constraints. In this paper, we present special constraint solving techniques for the domain {0,1} originating from mathematical programming. The key concepts are the generation of strong valid inequalities for the solution set of a constraint system and the notion of branch-and-cut.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0–1 programs. Mathematical Programming, 58:295–324, 1993.Google Scholar
  2. 2.
    E. Balas, S. Ceria, and G. Cornuéjols. Solving mixed 0–1 programs by a lift-and-project method. In Symposium on Discrete Algorithms, SODA, Austin, Texas ACM-SIAM, 1993.Google Scholar
  3. 3.
    P. Barth. A complete symbolic 0–1 constraint solver. In 3rd Workshop on Constraint Logic Programming, WCLP'93, Marseille, March 1993.Google Scholar
  4. 4.
    P. Barth. Linear 0–1 inequalities and extended clauses. In Logic Programming and Automated Reasoning, LPAR'93, St. Petersburg, Springer, LNCS 698, 1993.Google Scholar
  5. 5.
    P. Barth. Linear 0–1 inequalities and extended clauses. Technical Report MPI-I-94–216, Max-Planck-Institut für Informatik, Saarbrücken, April 1994.Google Scholar
  6. 6.
    P. Barth. Logic-based 0–1 constraint solving in constraint logic programming. PhD thesis, Fachbereich Informatik, Univ. des Saarlandes, 1994. In preparation.Google Scholar
  7. 7.
    R. E. Bixby, E. A. Boyd, and R. Indovina. MIPLIB: A test set for mixed integer programming problems. SIAM News 25, page 16, 1992.Google Scholar
  8. 8.
    C. E. Blair, R. G. Jeroslow, and J. K. Lowe. Some results and experiments in programming techniques for prepositional logic. Computers & Operations Research, 13(5):633–645, 1986.Google Scholar
  9. 9.
    A. Bockmayr. Logic programming with pseudo-Boolean constraints. Technical Report MPI-I-91-227, Max-Planck-Institut für Informatik, Saarbrücken, 1991.Google Scholar
  10. 10.
    A. Bockmayr. Logic programming with pseudo-Boolean constraints. In F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming. Selected Research, chapter 18, pages 327–350. MIT Press, 1993.Google Scholar
  11. 11.
    A. Bockmayr. Cutting planes in constraint logic programming. Technical Report MPI-I-94-207, Max-Planck-Institut für Informatik, Saarbrücken, February 1994.Google Scholar
  12. 12.
    W. Büttner and H. Simonis. Embedding Boolean expressions in logic programming. Journal of Symbolic Computation, 4(2):191–205, 1987.Google Scholar
  13. 13.
    P. Codognet and D. Diaz. Boolean constraint solving using clp(FD). In Logic Programming. Proceedings of the 1993 International Symposium, ILPS'93, Vancouver. MIT Press, 1993.Google Scholar
  14. 14.
    P. Codognet and D. Diaz. clp(B): Combining simplicity and efficiency in Boolean constraint solving. In Programming Language Implementation and Logic Programming, PLILP'94, Madrid. Springer, LNCS 844, 1994.Google Scholar
  15. 15.
    H. Crowder, E. J. Johnson, and M. Padberg. Solving large-scale 0–1 linear programming problems. Operations Research, 31(5):803–834, 1983.Google Scholar
  16. 16.
    R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bull. AMS, 64:275–278, 1958.Google Scholar
  17. 17.
    J. Hooker. Logic-based methods for optimization: A tutorial. Working Paper 1994–05, GSIA, Carnegie-Mellon-University, 1994.Google Scholar
  18. 18.
    J. N. Hooker. Generalized resolution and cutting planes. Annals of Operations Research, 12:217–239, 1988.Google Scholar
  19. 19.
    J. N. Hooker. A quantitative approach to logical inference. Decision Support Systems, 4:45–69, 1988.Google Scholar
  20. 20.
    J. N. Hooker. Generalized resolution for 0–1 linear inequalities. Annals of Mathmatics and Artificial Intelligence, 6:271–286, 1992.Google Scholar
  21. 21.
    G. Nemhauser, M. W. P. Savelsbergh, and G. Sigismondi. MINTO, a Mixed INTeger Optimizer. Operations Research Letters, 15:47–58, 1994.Google Scholar
  22. 22.
    G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley, 1988.Google Scholar
  23. 23.
    M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100, 1991.Google Scholar
  24. 24.
    A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Alexander Bockmayr
    • 1
  1. 1.Max-Planck-Institut für Informatik, Im StadtwaldSaarbrücken

Personalised recommendations